Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(49): 22505-22513, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36450002

RESUMO

Developing new types of high-capacity and high-energy density rechargeable batteries is important to future generations of consumer electronics, electric vehicles, and mass energy storage applications. Recently, we reported ∼3.5 V sodium/chlorine (Na/Cl2) and lithium/chlorine (Li/Cl2) batteries with up to 1200 mAh g-1 reversible capacity, using either a Na or a Li metal as the negative electrode, an amorphous carbon nanosphere (aCNS) as the positive electrode, and aluminum chloride (AlCl3) dissolved in thionyl chloride (SOCl2) with fluoride-based additives as the electrolyte [Zhu et al., Nature, 2021, 596 (7873), 525-530]. The high surface area and large pore volume of aCNS in the positive electrode facilitated NaCl or LiCl deposition and trapping of Cl2 for reversible NaCl/Cl2 or LiCl/Cl2 redox reactions and battery discharge/charge cycling. Here, we report an initially low surface area/porosity graphite (DGr) material as the positive electrode in a Li/Cl2 battery, attaining high battery performance after activation in carbon dioxide (CO2) at 1000 °C (DGr_ac) with the first discharge capacity ∼1910 mAh g-1 and a cycling capacity up to 1200 mAh g-1. Ex situ Raman spectroscopy and X-ray diffraction (XRD) revealed the evolution of graphite over battery cycling, including intercalation/deintercalation and exfoliation that generated sufficient pores for hosting LiCl/Cl2 redox. This work opens up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl2 batteries. Lastly, we employed mass spectrometry to probe the Cl2 trapped in the graphitic positive electrode, shedding light into the Li/Cl2 battery operation.

2.
Nature ; 596(7873): 525-530, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433941

RESUMO

Lithium-ion batteries (LIBs) are widely used in applications ranging from electric vehicles to wearable devices. Before the invention of secondary LIBs, the primary lithium-thionyl chloride (Li-SOCl2) battery was developed in the 1970s using SOCl2 as the catholyte, lithium metal as the anode and amorphous carbon as the cathode1-7. This battery discharges by lithium oxidation and catholyte reduction to sulfur, sulfur dioxide and lithium chloride, is well known for its high energy density and is widely used in real-world applications; however, it has not been made rechargeable since its invention8-13. Here we show that with a highly microporous carbon positive electrode, a starting electrolyte composed of aluminium chloride in SOCl2 with fluoride-based additives, and either sodium or lithium as the negative electrode, we can produce a rechargeable Na/Cl2 or Li/Cl2 battery operating via redox between mainly Cl2/Cl- in the micropores of carbon and Na/Na+ or Li/Li+ redox on the sodium or lithium metal. The reversible Cl2/NaCl or Cl2/LiCl redox in the microporous carbon affords rechargeability at the positive electrode side and the thin alkali-fluoride-doped alkali-chloride solid electrolyte interface stabilizes the negative electrode, both are critical to secondary alkali-metal/Cl2 batteries.

3.
ACS Nano ; 15(7): 12324-12333, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34269062

RESUMO

Although high-entropy alloys have been intensively studied in the past decade, there are still many requirements for manufacturing processes and application directions to be proposed and developed, but most techniques are focused on high-entropy bulk materials and surface coatings. We fabricated high-entropy ceramic (HEC) nanomaterials using simple pulsed laser irradiation scanning on mixed salt solutions (PLMS method) under low-vacuum conditions. This method, allowing simple operation, rapid manufacturing, and low cost, is capable of using various metal salts as precursors and is also suitable for both flat and complicated 3D substrates. In this work, we engineered this PLMS method to fabricate high-entropy ceramic oxides containing four to seven elements. To address the catalytic performance of these HEC nanomaterials, we focused on CoCrFeNiAl high-entropy oxides applied to the oxygen-evolution reaction (OER), which is considered a sluggish process in water. We performed systematic material characterization to solve the complicated structure of the CoCrFeNiAl HEC as a spinel structure, AB2O4 (A, B = Co, Cr, Fe, Ni, or Al). Atoms in A and B sites in the spinel structure can be replaced with other elements; either divalent or trivalent metals can occupy the spinel lattice using this PLMS process. We applied this PLMS method to manufacture electrocatalytic CoCrFeNiAl HEC electrodes for the OER reaction, which displayed state-of-the-art activity and stability.

4.
Nanoscale Res Lett ; 16(1): 76, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932177

RESUMO

In this study, we used a hot-pressing process to enhance the photocatalytic properties of TiO2/Fe2O3 bimetallic oxide with a periodic patterned structure on the surface to increase photon absorption for photocatalysis in the oxygen evolution reaction for water splitting. The hot-pressed samples show that combining the two metal oxides improves the absorption band edge of the electrode at different wavelengths. The patterned structure obtained using the hot-pressing process successfully improves photon absorption, resulting in a two-fold enhancement compared with a flat surface electrode.

5.
Proc Natl Acad Sci U S A ; 117(45): 27847-27853, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106405

RESUMO

Potassium secondary batteries are contenders of next-generation energy storage devices owing to the much higher abundance of potassium than lithium. However, safety issues and poor cycle life of K metal battery have been key bottlenecks. Here we report an ionic liquid electrolyte comprising 1-ethyl-3-methylimidazolium chloride/AlCl3/KCl/potassium bis(fluorosulfonyl) imide for safe and high-performance batteries. The electrolyte is nonflammable and exhibits a high ionic conductivity of 13.1 mS cm-1 at room temperature. A 3.6-V battery with K anode and Prussian blue/reduced graphene oxide cathode delivers a high energy and power density of 381 and 1,350 W kg-1, respectively. The battery shows an excellent cycling stability over 820 cycles, retaining ∼89% of the original capacity with high Coulombic efficiencies of ∼99.9%. High cyclability is also achieved at elevated temperatures up to 60 °C. Uniquely, robust K, Al, F, and Cl-containing passivating interphases are afforded with this electrolyte, which is key to superior battery cycling performances.

6.
Nanoscale Res Lett ; 15(1): 130, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32542412

RESUMO

α-Phase hematite photoelectrodes can split water. This material is nontoxic, inexpensive, and chemically stable; its low energy gap of 2.3 eV absorbs light with wavelengths lower than 550 nm, accounting for approximately 30% of solar energy. Previously, we reported polyhedral pseudocubic α-Fe2O3 nanocrystals using a facile hydrothermal route to increase spatial charge separation, enhancing the photocurrent of photocatalytic activity in the water-splitting process. Here, we propose a p-n junction structure in the photoanode of pseudocubic α-Fe2O3 to improve short carrier diffusion length, which limits its photocatalytic efficiency. We dope Zn on top of an Fe2O3 photoanode to form a layer of p-type semiconductor material; Sn is doped from the FTO substrate to form a layer of n-type semiconductor material. The p-n junction, n-type Fe2O3:Sn and p-type Fe2O3:Zn, increase light absorption and charge separation caused by the internal electric field in the p-n junction.

7.
Adv Mater ; 32(26): e2001741, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449260

RESUMO

Rechargeable lithium metal batteries are next generation energy storage devices with high energy density, but face challenges in achieving high energy density, high safety, and long cycle life. Here, lithium metal batteries in a novel nonflammable ionic-liquid (IL) electrolyte composed of 1-ethyl-3-methylimidazolium (EMIm) cations and high-concentration bis(fluorosulfonyl)imide (FSI) anions, with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as a key additive are reported. The Na ion participates in the formation of hybrid passivation interphases and contributes to dendrite-free Li deposition and reversible cathode electrochemistry. The electrolyte of low viscosity allows practically useful cathode mass loading up to ≈16 mg cm-2 . Li anodes paired with lithium cobalt oxide (LiCoO2 ) and lithium nickel cobalt manganese oxide (LiNi0.8 Co0.1 Mn0.1 O2 , NCM 811) cathodes exhibit 99.6-99.9% Coulombic efficiencies, high discharge voltages up to 4.4 V, high specific capacity and energy density up to ≈199 mAh g-1 and ≈765 Wh kg-1 respectively, with impressive cycling performances over up to 1200 cycles. Highly stable passivation interphases formed on both electrodes in the novel IL electrolyte are the key to highly reversible lithium metal batteries, especially for Li-NMC 811 full batteries.

8.
J Am Chem Soc ; 142(16): 7276-7282, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32250611

RESUMO

Electrocatalytic CO2 reduction (CO2RR) to valuable fuels is a promising approach to mitigate energy and environmental problems, but controlling the reaction pathways and products remains challenging. Here a novel Cu2O nanoparticle film was synthesized by square-wave (SW) electrochemical redox cycling of high-purity Cu foils. The cathode afforded up to 98% Faradaic efficiency for electroreduction of CO2 to nearly pure formate under ≥45 atm CO2 in bicarbonate catholytes. When this cathode was paired with a newly developed NiFe hydroxide carbonate anode in KOH/borate anolyte, the resulting two-electrode high-pressure electrolysis cell achieved high energy conversion efficiencies of up to 55.8% stably for long-term formate production. While the high-pressure conditions drastically increased the solubility of CO2 to enhance CO2 reduction and suppress hydrogen evolution, the (111)-oriented Cu2O film was found to be important to afford nearly 100% CO2 reduction to formate. The results have implications for CO2 reduction to a single liquid product with high energy conversion efficiency.

9.
Proc Natl Acad Sci U S A ; 116(48): 23915-23922, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31723041

RESUMO

Electrochemical reduction of CO2 to useful chemicals has been actively pursued for closing the carbon cycle and preventing further deterioration of the environment/climate. Since CO2 reduction reaction (CO2RR) at a cathode is always paired with the oxygen evolution reaction (OER) at an anode, the overall efficiency of electrical energy to chemical fuel conversion must consider the large energy barrier and sluggish kinetics of OER, especially in widely used electrolytes, such as the pH-neutral CO2-saturated 0.5 M KHCO3 OER in such electrolytes mostly relies on noble metal (Ir- and Ru-based) electrocatalysts in the anode. Here, we discover that by anodizing a metallic Ni-Fe composite foam under a harsh condition (in a low-concentration 0.1 M KHCO3 solution at 85 °C under a high-current ∼250 mA/cm2), OER on the NiFe foam is accompanied by anodic etching, and the surface layer evolves into a nickel-iron hydroxide carbonate (NiFe-HC) material composed of porous, poorly crystalline flakes of flower-like NiFe layer-double hydroxide (LDH) intercalated with carbonate anions. The resulting NiFe-HC electrode in CO2-saturated 0.5 M KHCO3 exhibited OER activity superior to IrO2, with an overpotential of 450 and 590 mV to reach 10 and 250 mA/cm2, respectively, and high stability for >120 h without decay. We paired NiFe-HC with a CO2RR catalyst of cobalt phthalocyanine/carbon nanotube (CoPc/CNT) in a CO2 electrolyzer, achieving selective cathodic conversion of CO2 to CO with >97% Faradaic efficiency and simultaneous anodic water oxidation to O2 The device showed a low cell voltage of 2.13 V and high electricity-to-chemical fuel efficiency of 59% at a current density of 10 mA/cm2.

10.
Nat Commun ; 10(1): 3302, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341162

RESUMO

Rechargeable sodium metal batteries with high energy density could be important to a wide range of energy applications in modern society. The pursuit of higher energy density should ideally come with high safety, a goal difficult for electrolytes based on organic solvents. Here we report a chloroaluminate ionic liquid electrolyte comprised of aluminium chloride/1-methyl-3-ethylimidazolium chloride/sodium chloride ionic liquid spiked with two important additives, ethylaluminum dichloride and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide. This leads to the first chloroaluminate based ionic liquid electrolyte for rechargeable sodium metal battery. The obtained batteries reached voltages up to ~ 4 V, high Coulombic efficiency up to 99.9%, and high energy and power density of ~ 420 Wh kg-1 and ~ 1766 W kg-1, respectively. The batteries retained over 90% of the original capacity after 700 cycles, suggesting an effective approach to sodium metal batteries with high energy/high power density, long cycle life and high safety.

11.
Proc Natl Acad Sci U S A ; 116(14): 6624-6629, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886092

RESUMO

Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue. Here we present a multilayer anode consisting of a nickel-iron hydroxide (NiFe) electrocatalyst layer uniformly coated on a nickel sulfide (NiSx) layer formed on porous Ni foam (NiFe/NiSx-Ni), affording superior catalytic activity and corrosion resistance in solar-driven alkaline seawater electrolysis operating at industrially required current densities (0.4 to 1 A/cm2) over 1,000 h. A continuous, highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents toward water oxidation and an in situ-generated polyatomic sulfate and carbonate-rich passivating layers formed in the anode are responsible for chloride repelling and superior corrosion resistance of the salty-water-splitting anode.

12.
ACS Appl Mater Interfaces ; 11(10): 10351-10355, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30768239

RESUMO

It has been known for several decades that defects are largely responsible for the catalytically active sites on metal and semiconductor surfaces. However, it is difficult to directly probe these active sites because the defects associated with them are often relatively rare with respect to the stoichiometric crystalline surface. In the work presented here, we demonstrate a method to selectively probe defect-mediated photocatalysis through differential alternating current (ac) photocurrent (PC) measurements. In this approach, electrons are photoexcited from the valence band to a relatively narrow distribution of subband gap states in TiO2 and then subsequently to the ions in solution. Because of their limited number, these defect states fill up quickly, resulting in Pauli blocking, and are thereby undetectable under direct current or continuous wave excitation. In the method demonstrated here, the incident light is modulated with an optical chopper, whereas the PC is measured with a lock-in amplifier. Thin (5 nm) films of TiO2 deposited by atomic layer deposition on various metal films, including Au, Cu, and Al, exhibit the same wavelength-dependent PC spectra, with a broad peak centered around 2.0 eV corresponding to the band-to-defect transition associated with the hydrogen evolution reaction (HER). While the UV-vis absorption spectra of these films show no features at 2.0 eV, photoluminescence (PL) spectra of these photoelectrodes show a similar wavelength dependence with a peak of around 2.0 eV, corresponding to the subband gap emission associated with these defect sites. As a control, alumina (Al2O3) films exhibit no PL or PC over the visible wavelength range. The ac PC plotted as a function of electrode potential shows a peak of around -0.4 to -0.1 V versus normal hydrogen electrode, as the monoenergetic defect states are tuned through a resonance with the HER potential. This approach enables the direct photoexcitation of catalytically active defect sites to be studied selectively without the interference of the continuum interband transitions or the effects of Pauli blocking, which is limited by the slow turnover time of the catalytically active sites, typically on the order of 1 µs. We believe that this general approach provides an important new way to study the role of defects in catalysis in an area where selective spectroscopic studies of these are few.

13.
Nanoscale Res Lett ; 12(1): 560, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986769

RESUMO

Although TiO2 was formerly a common material for photocatalysis reactions, its wide band gap (3.2 eV) results in absorbing only ultraviolet light, which accounts for merely 4% of total sunlight. Modifying TiO2 has become a focus of photocatalysis reaction research, and combining two metal oxide semiconductors is the most common method in the photocatalytic enhancement process. When MoO3 and TiO2 come into contact to form a heterogeneous interface, the photogenerated holes excited from the valence band of MoO3 should be transferred to the valence band of TiO2 to effectively reduce the charge recombination of photogenerated electron-hole pairs. This can efficiently separate the pairs and promote photocatalysis efficiency. In addition, photocurrent enhancement is attributed to the strong near-field and light-scattering effects from plasmonic Ag nanoparticles. In this work, we fabricated MoO3-coated TiO2 nanotube heterostructures with a 3D hierarchical configuration through two-step anodic oxidation and a facile hydrothermal method. This 3D hierarchical structure consists of a TiO2 nanotube core and a MoO3 shell (referred to as TNTs@MoO3), as characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy.

14.
Nanoscale Res Lett ; 12(1): 362, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28532127

RESUMO

"Carbon-based material" has demonstrated a great potential on water purification due to its strong physical adsorption to organic pollutants in the water. Three-dimensional cubic ordered mesoporous carbon (CMK-8), one of the well-known ordered mesoporous carbons, was prepared by using nanocasting method with mesoporous silica (KIT-6) as the template. In this study, CMK-8 blended with Nafion polymer to form a free-standing mesoporous CMK-8-Nafion composite membrane. The synthesis of high crystallinity CMK-8 was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). More than 80% methyl orange (MO) removal efficiency was observed under 254-nm UV irradiation after 120 min. Ninety-two percent recycling performance was remained after four recycling tests, which indicated a reliable servicing lifetime for the water purification. Furthermore, an additional layer of plasmonic silver nanoparticles (Ag NPs) was integrated into this CMK-8-Nafion membrane for higher pollutant removal efficiency, attributing from the generation of plasmon-resonance hot electrons from Ag NPs. A 4-in. CMK-8-Nafion composite membrane was also fabricated for the demonstration of potential large-scale utilization.

15.
ACS Appl Mater Interfaces ; 9(1): 327-334, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27957831

RESUMO

In this study, a 4 in. CMK-8-Nafion membrane was fabricated using three-dimensional cubic ordered mesoporous carbon CMK-8 blended with a Nafion polymer. Plasmon-resonance hot electrons and holes from Au nanoparticles (NPs) combined with this CMK-8-Nafion membrane resulted in the effective decomposition of methyl orange (MO) due to the synergetic work of hot carriers with mesoporous carbon; a sample of Au/CMK-8-Nafion exposed to outdoor sunlight radiation for 150 min successfully removed 97% of MO. Fourier transform infrared spectroscopy (FTIR) was employed to examine the generation of hydroxyl groups (OH-) during decomposition. Finally, the spatial distribution of hydroxyl groups was also investigated across the different coverage densities of plasmonic Au NPs.

16.
ACS Appl Mater Interfaces ; 7(16): 8412-8, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25848834

RESUMO

The enhanced water splitting photocurrent has been observed through plasmonic mesoporous composite electrode TiO2-CMK-3/Ag under visible light irradiation. Strong light absorption achieved from the integrations of ordered mesoporous carbon (CMK-3) and silver plasmonic nanoparticles (NPs) layer in the TiO2, which significantly increased the effective optical depth of TiO2-CMK-3/Ag photoelectrode. The carbon-based CMK-3 also increased the surface wetting behavior and conductivity of the photoelectrodes, which resulted in a higher ion exchange rate and faster electron transport. The synthesis of high crystalline TiO2-CMK-3/Ag composite photocatalyst was verified by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Pronounced enhancement of light absorption of TiO2-CMK-3/Ag photoelectrode was confirmed by UV/vis spectrophotometers. Two orders of magnitude of the enhanced water splitting photocurrent were obtained in the TiO2-CMK-3/Ag composite photoelectrode with respect to TiO2 only. Finally, spatially resolved mapping photocurrents were also demonstrated in this study.

17.
Nanotechnology ; 22(30): 305709, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21719968

RESUMO

We study the effect of polarized laser annealing on the crystalline structure of individual crystalline-amorphous core-shell silicon nanowires (NWs) using Raman spectroscopy. The crystalline fraction of the annealed spot increases dramatically from 0 to 0.93 with increasing incident laser power. We observe Raman lineshape narrowing and frequency hardening upon laser annealing due to the growth of the crystalline core, which is confirmed by high resolution transmission electron microscopy (HRTEM). The anti-Stokes:Stokes Raman intensity ratio is used to determine the local heating temperature caused by the intense focused laser, which exhibits a strong polarization dependence in Si NWs. The most efficient annealing occurs when the laser polarization is aligned along the axis of the NWs, which results in an amorphous-crystalline interface less than 0.5 µm in length. This paper demonstrates a new approach to control the crystal structure of NWs on the sub-micron length scale.

18.
ACS Nano ; 4(9): 5095-100, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20698573

RESUMO

We apply immense strain to ultralong, suspended, single-walled carbon nanotubes while monitoring their Raman spectra. We can achieve strains up to 13.7 ± 0.3% without slippage, breakage, or defect formation based on the observation of reversible change in Raman spectra. This is more than twice that of previous observations. The rate of G band downshift with strain is found to span a wide range from -6.2 to -23.6 cm(-1)/% strain. Under these immense strains, the G band is observed to downshift by up to 157 cm(-1) (from 1592 to 1435 cm(-1)). Interestingly, under these significant lattice distortions, we observe no detectable D band Raman intensity. Also, we do not observe any broadening of the G band line width until a threshold downshift of Δω(G) > 75 cm(-1) is achieved at high strains, beyond which the fwhm of the G band increases sharply and reversibly. On the basis of a theoretical nonlinear stress-strain response, we estimate the maximum applied stress of the nanotubes in this study to be 99 GPa with a strength-to-weight ratio of almost 74,000 kN x m/kg, which is 30 times that of Kevlar and 117 times that of steel.

19.
Nano Lett ; 10(4): 1314-8, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20350008

RESUMO

Irradiating gold nanoparticles at their plasmon resonance frequency creates immense plasmonic charge and high temperatures, which can be used to drive catalytic reactions. By integrating strongly plasmonic nanoparticles with strongly catalytic metal oxides, significant enhancements in the catalytic activity can be achieved. Here, we study the plasmonically driven catalytic conversion of CO to CO(2) by irradiating Au nanoparticle/Fe(2)O(3) composites. The reaction rate of this composite greatly exceeds that of the Au nanoparticles or Fe(2)O(3) alone, indicating that this reaction is not driven solely by the thermal (plasmonic) heating of the gold nanoparticles but relies intimately on the interaction of these two materials. A comparison of the plasmonically driven catalytic reaction rate with that obtained under uniform heating shows an enhancement of at least 2 orders of magnitude.


Assuntos
Monóxido de Carbono/química , Nanotecnologia/métodos , Dióxido de Carbono/síntese química , Dióxido de Carbono/química , Catálise , Óxido Ferroso-Férrico/química , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Propriedades de Superfície , Temperatura , Fatores de Tempo
20.
Nanotechnology ; 21(10): 105304, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20160339

RESUMO

We present an optical method for patterning SERS (surface-enhanced Raman spectroscopy)--enhancing aggregates of gold nanoparticles, using a focused laser beam to optically trap the nanoparticles in suspension. At high laser powers, heat generated from the plasmonic excitation causes boiling of the aqueous suspension and the formation of gaseous bubbles of water vapor. By measuring the Raman peak of the hydroxyl bond of water, the temperature in the laser spot during the aggregation can be determined in situ. The hydrophilic nanoparticles are found to aggregate at the liquid-vapor interface. By allowing the suspension to dry, a ring of gold nanoparticles is deposited on the substrate, producing a highly SERS-active region. These aggregates are studied using optical microscopy, scanning electron microscopy and micro-Raman spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...