Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 10(10): 1365-1371, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34164942

RESUMO

In its 2019 report, The Skilled Technical Workforce: Crafting America's Science and Engineering Enterprise, the National Science Board recommended a national charge to create a skilled technical workforce (STW) driven by science and engineering. The RegenMed Development Organization (ReMDO), through its RegeneratOR Workforce Development Initiative, has taken on this challenge beginning with an assessment of regenerative medicine (RM) biomanufacturing knowledge, skills, and abilities (KSAs) needed for successful employment. While STW often refers only to associate degree or other prebaccalaureate prepared technicians, the RM biomanufacturing survey included responses related to baccalaureate prepared technicians. Three levels of preparation were articulated in the research: basic employability skills, core bioscience skills, and RM biomanufacturing technical skills. The first two of these skill levels have been defined by previous research and are generally accepted as foundational-the Common Employability Skills developed by the National Network of Business and Industry Associations and the Core Skill Standards for Bioscience Technicians developed by the National Center for the Biotechnology Workforce. Fifteen skill sets addressing the specialized needs of RM and related biotechnology sectors were identified in the ReMDO survey, defining a third level of KSAs needed for entry-level employment in RM biomanufacturing. The purpose of the article is to outline the KSAs necessary for RM biomanufacturing, quantify the skills gap that currently exists between skills required by employers and those acquired by employees and available in the labor market, and make recommendations for the application of these findings.


Assuntos
Medicina Regenerativa , Inquéritos e Questionários , Recursos Humanos
2.
Stem Cells Transl Med ; 7(8): 564-568, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30009571

RESUMO

Regenerative medicine is poised to become a significant industry within the medical field. As such, the development of strategies and technologies for standardized and automated regenerative medicine clinical manufacturing has become a priority. An industry-driven roadmap toward industrial scale clinical manufacturing was developed over a 3-year period by a consortium of companies with significant investment in the field of regenerative medicine. Additionally, this same group identified critical roadblocks that stand in the way of advanced, large-scale regenerative medicine clinical manufacturing. This perspective article details efforts to reach a consensus among industry stakeholders on the shortest pathway for providing access to regenerative medicine therapies for those in need, both within the United States and around the world. Stem Cells Translational Medicine 2018;7:564-568.


Assuntos
Reatores Biológicos , Medicina Regenerativa , Automação , Materiais Biocompatíveis/química , Reatores Biológicos/normas , Meios de Cultura/química , Humanos , Indústrias , Controle de Qualidade , Medicina Regenerativa/normas , Engenharia Tecidual
3.
Lancet Neurol ; 15(2): 219-230, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26704439

RESUMO

At present, no effective cure or prophylaxis exists for Alzheimer's disease. Symptomatic treatments are modestly effective and offer only temporary benefit. Advances in induced pluripotent stem cell (iPSC) technology have the potential to enable development of so-called disease-in-a-dish personalised models to study disease mechanisms and reveal new therapeutic approaches, and large panels of iPSCs enable rapid screening of potential drug candidates. Different cell types can also be produced for therapeutic use. In 2015, the US Food and Drug Administration granted investigational new drug approval for the first phase 2A clinical trial of ischaemia-tolerant mesenchymal stem cells to treat Alzheimer's disease in the USA. Similar trials are either underway or being planned in Europe and Asia. Although safety and ethical concerns remain, we call for the acceleration of human stem cell-based translational research into the causes and potential treatments of Alzheimer's disease.


Assuntos
Doença de Alzheimer/terapia , Ensaios Clínicos como Assunto , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Humanos , Células-Tronco Pluripotentes Induzidas/transplante
4.
Stem Cells Dev ; 24(16): 1852-64, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25794298

RESUMO

There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Técnicas de Cultura de Células/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia
5.
Stem Cells Transl Med ; 3(12): 1418-28, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25368377

RESUMO

Induced pluripotent stem cells (iPSCs) offer an opportunity to delve into the mechanisms underlying development while also affording the potential to take advantage of a number of naturally occurring mutations that contribute to either disease susceptibility or resistance. Just as with any new field, several models of screening are being explored, and innovators are working on the most efficient methods to overcome the inherent limitations of primary cell screens using iPSCs. In the present review, we provide a background regarding why iPSCs represent a paradigm shift for central nervous system (CNS) disease modeling. We describe the efforts in the field to develop more biologically relevant CNS disease models, which should provide screening assays useful for the pharmaceutical industry. We also provide some examples of successful uses for iPSC-based screens and suggest that additional development could revolutionize the field of drug discovery. The development and implementation of these advanced iPSC-based screens will create a more efficient disease-specific process underpinned by the biological mechanism in a patient- and disease-specific manner rather than by trial-and-error. Moreover, with careful and strategic planning, shared resources can be developed that will enable exponential advances in the field. This will undoubtedly lead to more sensitive and accurate screens for early diagnosis and allow the identification of patient-specific therapies, thus, paving the way to personalized medicine.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Descoberta de Drogas/métodos , Células-Tronco Pluripotentes Induzidas , Modelos Neurológicos , Humanos , Medicina de Precisão/métodos
6.
Am J Transl Res ; 5(4): 450-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724168

RESUMO

Identifying mechanisms to enhance neuroprotection holds tremendous promise in developing new treatments for neuropsychiatric and neurodegenerative diseases. We sought to determine the potential role for microRNAs (miRNAs) in neuroprotection following neuronal death. A neuronal culture system of rat cerebellar granule cells was used to examine miRNA expression changes following glutamate-induced excitotoxicity and neuroprotective treatments. Combination treatment with the mood stabilizers lithium and valproic acid provided near-complete protection from glutamate excitotoxicity. Numerous miRNAs were detected by microarrays to be regulated by the combined lithium and valproic acid treatment, and the following candidates were confirmed using real-time PCR: miR-34a, miR-147b, miR-182, miR-222, miR-495, and miR-690. We then verified the apoptotic actions of miR-34a mimic in a human neuroblastoma cell line (SH-SY5Y) under basal conditions and following endoplasmic reticulum stress. To gain insight into the function of these mood stabilizer-regulated miRNAs, we performed two separate analyses: a candidate approach using Ingenuity Pathway Analysis that was restricted to only our PCR-verified miRNAs, and a global approach using DIANA-mirPath that included all significantly regulated miRNAs. It was observed that the pathways associated with mood stabilizer-regulated miRNAs in our study (global approach) are strongly associated with pathways implicated in neuropsychiatric diseases such as schizophrenia. We also observed an overlap in the mood stabilizer-regulated miRNAs identified from our study along with dysregulated miRNAs in both neuropsychiatric and neurodegenerative disorders. We anticipate that these associations and overlaps implicate critical pathways and miRNAs in disease mechanisms for novel therapeutic treatments that may hold potential for many neurological diseases.

7.
Pharmacol Rev ; 65(1): 105-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23300133

RESUMO

The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.


Assuntos
Antimaníacos/uso terapêutico , Compostos de Lítio/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Ácido Valproico/uso terapêutico , Animais , Transtorno Bipolar , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos
8.
Am J Transl Res ; 4(3): 316-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937209

RESUMO

Stroke is a devastating brain injury that is a leading cause of adult disability with limited treatment options. Using a rat model of middle cerebral artery occlusion (MCAO) to induce cerebral ischemia, we profiled microRNAs (miRNAs), small non-protein coding RNAs, in the ischemic cortex. Many miRNAs were confirmed by qPCR to be robustly upregulated 24 hours following MCAO surgery including miR-155, miR-297a, miR-466f, miR-466h, and miR-1224. In addition, we treated MCAO rats with valproic acid (VPA), a mood stabilizer and histone deacetylase inhibitor. This post-insult treatment was shown to improve neurological deficits and motor performance following MCAO. To provide mechanistic insight into the potential targets and pathways that may underlie these benefits, we profiled miRNAs regulated following this VPA treatment. Two promising post-insult VPA-regulated candidates were miR-331 and miR-885-3p. miR-331 was also regulated by VPA pre-treatment in rat cortical neuronal cultures subjected to oxygen-glucose deprivation, an in vitro ischemic model. The predicted targets of these miRNAs analyzed by Ingenuity Pathway Analysis (IPA) identified networks involved in hematological system development, cell death, and nervous system development. These predicted networks were further filtered using IPA and showed significant associations with neurological diseases including movement disorders, neurodegenerative disorders, damage to cerebral cortex, and seizure disorders among others. Collectively, these data support common disease mechanisms that may be under miRNA control and provide exciting directions for further investigations aimed at elucidating the miRNA mechanisms and targets that may yield new therapies for neurological disorders.

9.
Brain Res ; 1403: 19-27, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21718971

RESUMO

The endoplasmic reticulum (ER) is a critical site for intracellular calcium storage as well as protein synthesis, folding, and trafficking. Disruption of these processes is gaining support for contributing to heritable vulnerability of certain diseases. Here, we investigated Bax inhibitor 1 (BI-1), an anti-apoptotic protein that primarily resides in the ER and associates with B-cell lymphoma 2 (Bcl-2) and Bcl-XL, as an affective resiliency factor through its modulation of calcium homeostasis. We found that transgenic (TG) mice with BI-1 reinforced expression, via the neuronal specific enolase promoter, showed protection against the learned helplessness (LH) paradigm, an animal model to test stress coping. TG mice were also protected against anhedonia following both serotonin and catecholamine depletion as measured in two different models, the female urine sniffing test and the saccharine preference test. In addition, we used primary mouse cortical cultures to explore the ability of BI-1 to influence calcium homeostasis under basal conditions and also following challenge with thapsigargin (THPS), an inhibitor of sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) that disrupts calcium homeostasis. TG neurons showed decreased basal cytosolic calcium levels and decreased Ca(2+) cytosolic accumulation following challenge with THPS as compared to WT neuronal cultures. Together, these data suggest that BI-1, through its actions on calcium homeostasis, may confer affective resiliency in multiple animal models of depression and anhedonia.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Proteínas de Membrana/metabolismo , Resiliência Psicológica , Animais , Feminino , Desamparo Aprendido , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
10.
Int J Neuropsychopharmacol ; 14(5): 711-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20604988

RESUMO

Inhibition of glycogen synthase kinase-3 (GSK-3) by pharmacological tools can produce antidepressant-like effects in rodents. However, the GSK-3 isoform(s) and brain region(s) involved in regulating these behavioural effects remain elusive. We studied the effects of bilateral intra-hippocampal injections of lentivirus-expressing short-hairpin (sh)RNA targeting GSK-3ß on behavioural performance in mice subjected to chronic stress. Pre-injection of lentivirus-expressing GSK-3ß shRNA into the hippocampal dentate gyrus significantly decreased immobility time in both forced swim and tail suspension tests, while the locomotor activity of these mice was unchanged. These results suggest that lentiviral GSK-3ß shRNA injection induces antidepressant-like effects in chronically stressed mice. Under these conditions, the expression levels of GSK-3ß were persistently and markedly reduced in the hippocampus following GSK-3ß shRNA injection. To our knowledge, this is the first demonstration that a single injection of lentivirus-expressing GSK-3ß shRNA in the hippocampal dentate gyrus of chronically stressed mice has antidepressant-like effects elicited by gene silencing.


Assuntos
Antidepressivos/farmacologia , Giro Denteado/fisiologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Hipocampo/fisiologia , Estresse Fisiológico/fisiologia , Animais , Antidepressivos/metabolismo , Antidepressivos Tricíclicos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Desipramina/uso terapêutico , Vetores Genéticos , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Lentivirus , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , RNA Interferente Pequeno/fisiologia , Natação
11.
Proc Natl Acad Sci U S A ; 107(25): 11573-8, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534517

RESUMO

Lithium has been the gold standard in the treatment of bipolar disorder (BPD) for 60 y. Like lithium, glycogen synthase kinase 3 (GSK-3) inhibitors display both antimanic-like and antidepressant-like effects in some animal models. However, the molecular mechanisms of both lithium and GSK-3 inhibitors remain unclear. Here we show that the GSK-3 inhibitor AR-A014418 regulated alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)-induced GluR1 and GluR2 internalization via phosphorylation of kinesin light chain 2 (KLC2), the key molecule of the kinesin cargo delivery system. Specifically, AMPA stimulation triggered serine phosphorylation of KLC2 and, subsequently, the dissociation of the GluR1/KLC2 protein complex. This suggests that GSK-3 phosphorylation of KLC2 led to the dissociation of AMPA-containing vesicles from the kinesin cargo system. The peptide TAT-KLCpCDK, a specific inhibitor for KLC2 phosphorylation by GSK-3beta, reduced the formation of long-term depression. Furthermore, the TAT-KLCpCDK peptide showed antimanic-like effects similar to lithium's on amphetamine-induced hyperactivity, a frequently used animal model of mania. It also induced antidepressant-like effects in the tail suspension and forced swim tests, two commonly used animal models of depression. Taken together, the results demonstrated that KLC2 is a cellular target of GSK-3beta capable of regulating synaptic plasticity, particularly AMPA receptor trafficking, as well as mood-associated behaviors in animal models. The kinesin cargo system may provide valuable novel targets for the development of new therapeutics for mood disorders.


Assuntos
Afeto , Transtorno Bipolar/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/metabolismo , Cinesinas/metabolismo , Animais , Antidepressivos/farmacologia , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Lítio/farmacologia , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Plasticidade Neuronal/efeitos dos fármacos , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Tiazóis/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
12.
Brain Res ; 1293: 76-84, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19595676

RESUMO

Bipolar disorder (BPD) is a devastating psychiatric illness marked by recurrent episodes of mania and depression. While the underlying pathophysiology of BPD remains elusive, an abnormal hypothalamic-pituitary-adrenal (HPA) axis and dysfunctional glucocorticoid receptor (GR) signaling are considered hallmarks. This review will examine how targeting resiliency signaling cascades at the cellular level may serve as a mechanism to treat BPD. Here, cellular resiliency is defined as the ability of a cell to adapt to an insult or stressor. Such resiliency at the cellular level could confer resiliency at the systems level and, ultimately, help individuals to cope with stressors or recover from depressive or manic states. This review will focus on four molecular targets of mood stabilizers that are known to play integral roles in these cellular resiliency signaling pathways: (1) B-cell CLL/lymphoma 2 (Bcl-2), (2) Bcl-2-associated athanogene (BAG-1), (3) glucocorticoid receptors (GRs), and (4) 51 kDa FK506-binding protein (FKBP5). These targets have emerged from neurobiological and human genetic studies and employ mechanisms that modulate GR function or promote anti-apoptotic processes critical to affective resilience. Future research should focus on elucidating sustainable treatments that target resiliency factors-such as BAG-1 or FKBP5-which could ultimately be used to treat individuals suffering from BPD and prevent relapses in afflicted individuals. Further identification of resiliency and susceptibility factors will also be vital. Ultimately, these developments would allow for the treatment of susceptible individuals prior to the development of BPD.


Assuntos
Adaptação Fisiológica , Transtorno Bipolar/fisiopatologia , Receptores de Glucocorticoides/fisiologia , Transdução de Sinais/fisiologia , Antimaníacos/uso terapêutico , Apoptose , Transtorno Bipolar/tratamento farmacológico , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Plasticidade Neuronal , Sistema Hipófise-Suprarrenal/fisiopatologia
13.
Neuromolecular Med ; 11(3): 173-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19544012

RESUMO

Psychiatric illnesses are disabling disorders with poorly understood underlying pathophysiologies. However, it is becoming increasingly evident that these illnesses result from disruptions across whole cellular networks rather than any particular monoamine system. Recent evidence continues to support the hypothesis that these illnesses arise from impairments in cellular plasticity cascades, which lead to aberrant information processing in the circuits that regulate mood, cognition, and neurovegetative functions (sleep, appetite, energy, etc.). As a result, many have begun to consider future therapies that would be capable of affecting global changes in cellular plasticity to restore appropriate synaptic function and neuronal connectivity. MicroRNAs (miRNAs) are non-coding RNAs that can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. Here, we review some properties of miRNAs and show they are altered by stress, glucocorticoids, mood stabilizers, and in a particular psychiatric disorder, schizophrenia. While this field is still in its infancy, we consider their potential for regulating behavioral phenotypes and targeting key predicted signaling cascades that are implicated in psychiatric illness. Clearly, considerable research is required to better determine any therapeutic potential of targeting miRNAs; however, these agents may provide the next generation of effective therapies for psychiatric illnesses.


Assuntos
Transtornos Mentais , Saúde Mental , MicroRNAs , Animais , Comportamento/fisiologia , Predisposição Genética para Doença , Glucocorticoides/metabolismo , Humanos , Transtornos Mentais/genética , Transtornos Mentais/fisiopatologia , Transtornos Mentais/terapia , MicroRNAs/genética , MicroRNAs/uso terapêutico , Fenótipo , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia
14.
Neuropsychopharmacology ; 34(6): 1395-405, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18704095

RESUMO

MicroRNAs (miRNAs) regulate messenger RNA (mRNA) translation in a sequence-specific manner and are emerging as critical regulators of central nervous system plasticity. We found hippocampal miRNA level changes following chronic treatment with mood stabilizers (lithium and valproate (VPA)). Several of these miRNAs were then confirmed by quantitative PCR: let-7b, let-7c, miR-128a, miR-24a, miR-30c, miR-34a, miR-221, and miR-144. The predicted effectors of these miRNAs are involved in neurite outgrowth, neurogenesis, and signaling of PTEN, ERK, and Wnt/beta-catenin pathways. Interestingly, several of these effector-coding genes are also genetic risk candidates for bipolar disorder. We provide evidence that treatment with mood stabilizers increases these potential susceptibility genes in vivo: dipeptidyl-peptidase 10, metabotropic glutamate receptor 7 (GRM7), and thyroid hormone receptor, beta. Treatment of primary cultures with lithium- or VPA-lowered levels of miR-34a and elevated levels of GRM7, a predicted effector of miR-34a. Conversely, miR-34a precursor treatment lowered GRM7 levels and treatment with a miR-34a inhibitor enhanced GRM7 levels. These data confirm that endogenous miR-34a regulates GRM7 levels and supports the notion that miR-34a contributes to the effects of lithium and VPA on GRM7. These findings are the first to demonstrate that miRNAs and their predicted effectors are targets for the action of psychotherapeutic drugs.


Assuntos
Antimaníacos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Compostos de Lítio/farmacologia , MicroRNAs/metabolismo , Ácido Valproico/farmacologia , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Masculino , Análise em Microsséries , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Reação em Cadeia da Polimerase , Ratos , Ratos Endogâmicos WKY , Receptores de Glutamato Metabotrópico/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo
15.
Proc Natl Acad Sci U S A ; 105(25): 8766-71, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18562287

RESUMO

Recent microarray studies with stringent validating criteria identified Bcl-2-associated athanogene (BAG1) as a target for the actions of medications that are mainstays in the treatment of bipolar disorder (BPD). BAG1 is a Hsp70/Hsc70-regulating cochaperone that also interacts with glucocorticoid receptors (GRs) and attenuates their nuclear trafficking and function. Notably, glucocorticoids are one of the few agents capable of triggering both depressive and manic episodes in patients with BPD. As a nexus for the actions of glucocorticoids and bipolar medications, we hypothesized that the level of BAG1 expression would play a pivotal role in regulating affective-like behaviors. This hypothesis was investigated in neuron-selective BAG1 transgenic (TG) mice and BAG1 heterozygous knockout (+/-) mice. On mania-related tests, BAG1 TG mice recovered much faster than wild-type (WT) mice in the amphetamine-induced hyperlocomotion test and displayed a clear resistance to cocaine-induced behavioral sensitization. In contrast, BAG1+/- mice displayed an enhanced response to cocaine-induced behavioral sensitization. The BAG1 TG mice showed less anxious-like behavior on the elevated plus maze test and had higher spontaneous recovery rates from helplessness behavior compared with WT mice. In contrast, fewer BAG1+/- mice recovered from helplessness behavior compared with their WT controls. BAG1 TG mice also exhibited specific alterations of hippocampal proteins known to regulate GR function, including Hsp70 and FKBP51. These data suggest that BAG1 plays a key role in affective resilience and in regulating recovery from both manic-like and depression-like behavioral impairments.


Assuntos
Transtorno Bipolar/psicologia , Proteínas de Ligação a DNA/metabolismo , Transtorno Depressivo/psicologia , Fatores de Transcrição/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Proteínas de Ligação a DNA/genética , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/genética
16.
Nat Med ; 13(12): 1476-82, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18059283

RESUMO

Exercise has many health benefits, including antidepressant actions in depressed human subjects, but the mechanisms underlying these effects have not been elucidated. We used a custom microarray to identify a previously undescribed profile of exercise-regulated genes in the mouse hippocampus, a brain region implicated in mood and antidepressant response. Pathway analysis of the regulated genes shows that exercise upregulates a neurotrophic factor signaling cascade that has been implicated in the actions of antidepressants. One of the most highly regulated target genes of exercise and of the growth factor pathway is the gene encoding the VGF nerve growth factor, a peptide precursor previously shown to influence synaptic plasticity and metabolism. We show that administration of a synthetic VGF-derived peptide produces a robust antidepressant response in mice and, conversely, that mutation of VGF in mice produces the opposite effects. The results suggest a new role for VGF and identify VGF signaling as a potential therapeutic target for antidepressant drug development.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo/metabolismo , Exercício Físico , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Neuropeptídeos/metabolismo , Condicionamento Físico Animal , Animais , Desenho de Fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural , Análise de Sequência com Séries de Oligonucleotídeos , Células PC12 , Ratos
17.
Brain Res Mol Brain Res ; 141(1): 95-112, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16165245

RESUMO

Kainic acid activates non-N-methyl-d-aspartate (NMDA) glutamate receptors where it increases synaptic activity resulting in seizures, neurodegeneration, and remodeling. We performed microarray analysis on rat hippocampal tissue following kainic acid treatment in order to study the signaling mechanisms underlying these diverse processes in an attempt to increase our current understanding of mechanisms contributing to such fundamental processes as neuronal protection and neuronal plasticity. The kainic acid-treated rats used in our array experiments demonstrated severe seizure behavior that was also accompanied by neuronal degeneration which is suggested by fluoro-jade B staining and anti-caspase-3 immunohistochemistry. The gene profile revealed 36 novel kainic acid regulated genes along with additional genes previously reported. The functional roles of these novel genes are discussed. These genes mainly have roles in transcription and to a lesser extent have roles in cell death, extracellular matrix remodeling, cell cycle progression, neuroprotection, angiogenesis, and synaptic signaling. Gene regulation was confirmed via quantitative real time polymerase chain reaction and in situ hybridization.


Assuntos
Agonistas de Aminoácidos Excitatórios/toxicidade , Perfilação da Expressão Gênica , Ácido Caínico/toxicidade , Convulsões , Animais , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/patologia , Hipocampo/fisiologia , Hibridização In Situ , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA