Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535290

RESUMO

Ammonia is a promising carbon-free fuel, but current methods to produce ammonia are energy intensive. New methods are thereby needed, with one promising method being electrochemical nitrogen reduction cells. Efficient cell operation requires robust catalysts but also efficient membrane separators that permit the selective transport of ions while minimizing the transport of the products across the cell. Commercial membranes have an unknown morphology which makes designing improved cells challenging. To address this problem, we synthesized a series of membranes with controlled crosslinking density and chemical composition to understand their impact on ammonium transport. Higher crosslinking density led to lower ammonium permeability. At the highest crosslinking density, similar ammonium permeability was observed independent of the water volume fraction and hydrophobicity of the monomers. These results suggest new directions to develop membranes with reduced ammonium crossover to improve the efficiency of these electrochemical cells.

2.
Sci Rep ; 12(1): 657, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027634

RESUMO

We address the low selectivity problem faced by the electrochemical nitrogen (N2) reduction reaction (NRR) to ammonia (NH3) by exploiting the Mars-van Krevelen (MvK) mechanism on two-dimensional (2D) Ti2N nitride MXene. NRR technology is a viable alternative to reducing the energy and greenhouse gas emission footprint from NH3 production. Most NRR catalysts operate by using an associative or dissociative mechanism, during which the NRR competes with the hydrogen evolution reaction (HER), resulting in low selectivity. The MvK mechanism reduces this competition by eliminating the adsorption and dissociation processes at the sites for NH3 synthesis. We show that the new class of 2D materials, nitride MXenes, evoke the MvK mechanism to achieve the highest Faradaic efficiency (FE) towards NH3 reported for any pristine transition metal-based catalyst-19.85% with a yield of 11.33 µg/cm2/hr at an applied potential of - 250 mV versus RHE. These results can be expanded to a broad class of systems evoking the MvK mechanism and constitute the foundation of NRR technology based on MXenes.

3.
Membranes (Basel) ; 13(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36676824

RESUMO

Understanding multi-component transport through polymer membranes is critical for separation applications such as water purification, energy devices, etc. Specifically for CO2 reduction cells, where the CO2 reduction products (alcohols and carboxylate salts), crossover of these species is undesirable and improving the design of ion exchange membranes to prevent this behavior is needed. Previously, it was observed that acetate transport increased in copermeation with alcohols for cation exchange membranes consisting of poly(ethylene glycol) diacrylate (PEGDA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and that the inclusion of poly(ethylene glycol) methacrylate (PEGMA) (n = 5, n represents the number of ethylene oxide repeat units) could suppress this behavior. Here, we further investigate the role of PEGMA in modulating fractional free volume and transport behavior of alcohols and carboxylates. PEGDA-PEGMA membranes of varied membranes are fabricated with both varied pre -polymerization water content at constant PEGMA (n = 9) content and varied PEGMA content at two pre -polymerization water contents (20 and 60 wt.% water). Permeability to sodium acetate also decreases in these charge-neutral PEGDA-PEGMA membranes compared to PEGMA-free films. Therefore, incorporation of comonomers such as PEGMA with long side chains may provide a useful membrane chemistry structural motif for preventing undesirable carboxylate crossover in polymer membranes.

4.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502924

RESUMO

Understanding multi-component transport behavior through hydrated dense membranes is of interest for numerous applications. For the particular case of photoelectrochemical CO2 reduction cells, it is important to understand the multi-component transport behavior of CO2 electrochemical reduction products including mobile formate, acetate and ethanol in the ion exchange membranes as one role of the membrane in these devices is to minimize the permeation of these products. Anion exchange membranes (AEM) have been employed in these and other electrochemical devices as they act to facilitate the transport of common electrolytes (i.e., bicarbonates). However, as they act to facilitate the transport of carboxylates as well, thereby reducing the overall performance, the design of new AEMs is necessary to improve device performance through the selective transport of the desired ion(s) or electrolyte(s). Here, we investigate the transport behavior of formate and acetate and their co-transport with ethanol in two types of AEMs: (1) a crosslinked AEM prepared by free-radical copolymerization of a monomer with a quaternary ammonium (QA) group and a crosslinker, and (2) Selemion® AMVN. We observe a decrease in diffusivities to carboxylates in co-diffusion. We attribute this behavior to charge screening by the co-diffusing alcohol, which reduces the electrostatic attraction between QAs and carboxylates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA