Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(14): 5303-5310, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577368

RESUMO

Metal-organic frameworks (MOFs) have gained prominence as potential materials for atmospheric water harvesting, a vital solution for arid regions and areas experiencing severe water shortages. However, the molecular factors influencing the performance of MOFs in capturing water from the air remain elusive. Among all MOFs, Ni2X2BTDD (X = F, Cl, Br) stands out as a promising water harvester due to its ability to adsorb substantial amounts of water at low relative humidity (RH). Here, we use advanced molecular dynamics simulations carried out with the state-of-the-art MB-pol data-driven many-body potential to monitor water adsorption in the three Ni2X2BTDD variants as a function of RH. Our simulations reveal that the type of halide atom in the three Ni2X2BTDD frameworks significantly influences the corresponding molecular mechanisms of water adsorption: while water molecules form strong hydrogen bonds with the fluoride atoms in Ni2F2BTDD, they tend to form hydrogen bonds with the nitrogen atoms of the triazolate linkers in Ni2Cl2BTDD and Ni2Br2BTDD. Importantly, the large size of the bromide atoms reduces the void volume in the Ni2Br2BTDD pores, which enable water molecules to initiate an extended hydrogen-bond network at lower RH. These findings not only underscore the prospect for precisely tuning structural and chemical modifications of the frameworks to optimize their interaction with water, but also highlight the predictive power of simulations with the MB-pol data-driven many-body potential. By providing a realistic description of water under different thermodynamic conditions and environments, these simulations yield unique, molecular-level insights that can guide the design and optimization of energy-efficient water harvesting materials.

2.
J Phys Chem Lett ; 13(16): 3652-3658, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436129

RESUMO

For the past 50 years, researchers have sought molecular models that can accurately reproduce water's microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima near 223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ∼208 K. A local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is found to be the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid water's physical properties across broad ranges of thermodynamic states, including the so-called water's "no man's land" which is difficult to probe experimentally.


Assuntos
Simulação de Dinâmica Molecular , Água , Ligação de Hidrogênio , Temperatura , Termodinâmica , Água/química
3.
J Am Chem Soc ; 143(50): 21189-21194, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878776

RESUMO

Water capture mechanisms of zeolitic imidazolate framework ZIF-90 are revealed by differentiating the water clustering and the center pore filling step, using vibrational sum-frequency generation spectroscopy (VSFG) at a one-micron spatial resolution and state-of-the-art molecular dynamics (MD) simulations. Through spectral line shape comparison between VSFG and IR spectra, the relative humidity dependence of VSFG intensity, and MD simulations, based on MB-pol, we found water clustering and center pore filling happen nearly simultaneously within each pore, with water filling the other pores sequentially. The integration of nonlinear optics with MD simulations provides critical mechanistic insights into the pore filling mechanism and suggests that the relative strength of the hydrogen bonds governs the water uptake mechanisms. This molecular-level detailed mechanism can inform the rational optimization of metal-organic frameworks for water harvesting.

5.
Nat Commun ; 10(1): 4771, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628319

RESUMO

Water in confinement exhibits properties significantly different from bulk water due to frustration in the hydrogen-bond network induced by interactions with the substrate. Here, we combine infrared spectroscopy and many-body molecular dynamics simulations to probe the structure and dynamics of confined water as a function of relative humidity within a metal-organic framework containing cylindrical pores lined with ordered cobalt open coordination sites. Building upon the agreement between experimental and theoretical spectra, we demonstrate that water at low relative humidity binds initially to open metal sites and subsequently forms disconnected one-dimensional chains of hydrogen-bonded water molecules bridging between cobalt atoms. With increasing relative humidity, these water chains nucleate pore filling, and water molecules occupy the entire pore interior before the relative humidity reaches 30%. Systematic analysis of rotational and translational dynamics indicates heterogeneity in this pore-confined water, with water molecules displaying variable mobility as a function of distance from the interface.

6.
J Phys Chem B ; 122(47): 10754-10761, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30403350

RESUMO

A quantitative characterization of intermolecular and intramolecular couplings that modulate the OH-stretch vibrational band in liquid water has so far remained elusive. Here, we take up this challenge by combining the centroid molecular dynamics formalism, which accounts for nuclear quantum effects, with the MB-pol potential energy function, which accurately reproduces the properties of water across all phases, to model the infrared (IR) spectra of various isotopic water solutions with different levels of vibrational couplings, including those that cannot be probed experimentally. Analysis of the different IR OH-stretch line shapes provides direct evidence for the partially quantum-mechanical nature of hydrogen bonds in liquid water, which is emphasized by synergistic effects associated with intermolecular coupling and many-body electrostatic interactions. Furthermore, we quantitatively demonstrate that intramolecular coupling, which results in Fermi resonances due to the mixing between HOH-bend overtones and OH-stretch fundamentals, is responsible for the shoulder located at ∼3250 cm-1 of the IR OH-stretch band of liquid water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA