Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698523

RESUMO

Photinia × fraseri is a well-known ornamental shrub in southern China. In December 2021, we observed leaf spots that were circular to irregular, gray with dark red margins and violet brown with brownish violet edges on the leaves of Photinia × fraseri shrubs in the scenic area of Shenlongtan (28°46'10″N, 115°42'93″E), Jiangxi Province, China. Almost 15% of the leaves in the 1300 m2 Photinia × fraseri planting area were symptomatic. Thirty symptomatic leaves were randomly collected from different plants, and sectioned into 5-mm2 pieces, which were surface-sterilized using 1% NaOCl for 30 s. After rinsing thrice in sterile distilled water and drying, the pieces were transferred onto potato dextrose agar (PDA) and incubated at 28 ℃ for 5-7 days. A total of sixteen morphologically similar isolates were obtained. After incubation on PDA for 20 days, the fungi had irregular edges, were white to pale brown, and had spare aerial mycelium on the surface with irregularly distributed black, gregarious conidiomata. Conidia were fusoid, subcylindrical, straight to slightly curved, 4-septated, slightly constricted at the septa, and 23 to 36 × 6 to 10 µm (mean: 27.6 × 7.7 µm). The morphological characteristics were consistent with the features of Pseudopestalotiopsis species (Maharachchikumbura et al. 2014). The genomic DNA of two representative isolates (JFRL032 and JFRL033) was extracted for further identification. The internal transcribed spacer (ITS) region, translation elongation factor 1-ɑ (tef1-ɑ) and ß-tubulin (tub2) genes were amplified and sequenced using primers ITS5/ITS4, EF1-526F/EF1-1567R, and Bt2A/Bt2B, respectively (Maharachchikumbura et al. 2012). The sequences of the two representative isolates were 100% identical to each other. These nucleotide sequences were deposited in GenBank with accession numbers, ON342794 and ON342795 (ITS); ON375851 and ON375852 (tef1-ɑ); ON375853 and ON375854 (tub2). BLASTn searches of the obtained sequences revealed 99%-100% to ITS (MG816316, 478/478 nucleotides), tef1-ɑ (MG816336, 924/926 nucleotides), tub2 (MG816326, 441/442 nucleotides) sequences of the ex-type strain of Pseudopestalotiopsis ixorae (NTUCC17-001.1). Phylogenetic analysis was conducted using the concatenation of multiple sequences (ITS, tef1-ɑ and tub2) with the Maximum likelihood statistics in PhyloSuite v1.2.2 (Zhang et al.2020). The phylogenetic tree showed the two isolates clustered with P. ixorae in a clade with 100% bootstrap support. The isolates were identified as P. ixorae based on morphological and molecular data. To confirm pathogenicity, eight healthy leaves of 3-year-old Photinia × fraseri were surface sterilized, scratched with a pair of sterilized tweezers, and ten µl of conidial suspension (106 conidia/ml) was sprayed on the injured leaves and the control was sprayed with sterile distilled water. Then, All plants were potted in a climate chamber at 25℃ and 85% relative humidity. After 3 days, leaf spot symptoms similar to those described above were observed on inoculated leaves, while the non-inoculated leaves remained symptomless. The pathogen was reisolated from the inoculated leaves to fulfill Koch's postulates and confirmed as P. ixorae by morphological and molecular analysis. It has been reported that P. ixorae can infect the Ixora plant (Tsai et al., 2018). To the best of our knowledge, this is the first report of P. ixorae causing leaf spot on Photinia × fraseri in China. The study provides valuable information for identifying and controlling the leaf spot on Photinia × fraseri.

2.
Plant Dis ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537135

RESUMO

Agrocybe chaxingu is an edible and medicinal mushroom widely cultivated in China (Liu et al. 2021). Agrocybe chaxingu is extremely well-liked for the unique flavor and nutritional value. In May 2021, a serious white mucus disease was observed in the farms of A. chaxingu in the Ganxian district of Ganzhou City, Jiangxi Province, China, with an approximate disease incidence of 20%. In the years of 2022 and 2023, the same white mucus disease on A. chaxingu was observed in the farms in Nanchang City, Jiujiang City and Guangchang County, Jiangxi Province, China. The disease generally occurs on the media, stipe or pileus of A. chaxingu under condition of high humidity. The plasmodial slime molds migrated from the surface of culture media (78% hardwood sawdust, 15% wheat bran, 5% tea seed shell, 1% lime, and 1% gypsum) to the base of fruiting bodies, stipes and finally to pilei, showing as moist, sticky, and white reticulated structures. The infected fruiting bodies of A. chaxingu were completely covered by reticulated plasmodia, displaying a white or pale-yellow color. This resulted in the growth cessation, wilting and eventual death of fruiting body. Microscopic observation found that the plasmodia of slime mold enveloped the hyphae of A. chaxingu, resulting in the fragmentation of the hyphae. The disease can spread quickly, resulting in a 30% reduction in production. Slime mold cultures were isolated by transferring diseased fruiting bodies of A. chaxingu onto oat-agar medium (2% agar and 1% oatmeal) at 25 ℃. The isolates can be obtained after being subcultured for two to three generations. Purified plasmodia were placed on the semi-defined medium (1% tryptone, 1% glucose, 0.15% yeast extract, chick embryo extract and a balanced salt solution) to confirm the absence of bacteria (Daniel et al. 1964) and thus obtained the pure culture. Specimen of the voucher has been deposited in the Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences as number IAAM-W0002. The vegetative plasmodia have a large and well-developed scalloped structure that were white or milky white in colour. The white plasmodium became opaque pale yellow when exposed to light before fruiting. The veins merged and thickened. Fruiting bodies can be formed on the lid or side of the Petri dish under light condition. The fruiting bodies formed papillae with irregular shape, and then the color changed from translucent yellow to greyish black. Spores were usually spherical or subglobose, free, greyish brown in mass, purplish brown, 7-12 µm in diameter under light microscopy. These morphological characteristics were found to be consistent with those of Fuligo gyrosa (Synonym: Physarum gyrosum) (Kim et al. 2009; Shi et al. 2005; Jahn 1902). The identity of the isolates was further confirmed by sequence analysis of the 18S ribosomal RNA gene with primer SMNUR101/NS4 (Rusk et al. 1995; White et al. 1990). Using BLASTn searches, the sequence of 18S rRNA gene (GenBank accession number OR186216) matched the sequence of F. gyrosa (GenBank accession number LC744593) with the identity of 99.91% and coverage of 97%. A phylogenetic tree based on the 18S rRNA gene also demonstrated that the slime mold clustered with F. gyrosa. Over ten isolates have been obtained from the diseased A. chaxingu samples in different factories and identified as F. gyrosa. To test the pathogenicity of F. gyrosa, five healthy young fruiting bodies (three to five days of primordium) of A. chaxingu cultivated in mushroom-growing room were gently inoculated by a 12 mm diameter oat-agar medium with plasmodia at 24 ± 2 ℃ and then were kept with relative humidity of 90%-95%. Five fruiting bodies inoculated with a 12 mm oat-agar medium served as controls. After 5 days, white mucus characteristics and three fifths of death symptoms were observed on the fruiting bodies inoculated with the plasmodia, while the controls remained asymptomatic. The slime mold on the inoculated fruiting bodies was morphologically identical to F. gyrosa that was observed on the initial diseased fruiting bodies. It was also observed the envelopment A. chaxingu hyphae by the plasmodia of slime mold and fragmentation of the hyphae, and the fragmentation was not observed in the controls. Reisolations were prepared from the inoculated fruiting bodies and confirmed to be F. gyrosa based on morphological characteristics and 18S rRNA sequence, thus fulfilling Koch's postulates. Fuligo gyrosa has been reported to cause severe disease in oriental melon in Korea (Kim et al. 2009). This is the first report of F. gyrosa causing white mucus disease in cultivated A. chaxingu. The findings will provide important information on prevention and control of the disease, and be helpful for the development of A. chaxingu industry.

3.
Biodivers Data J ; 11: e97439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327284

RESUMO

Background: Freshwater fungi refer to the fungi that depend on the freshwater habitats for the whole life cycle or part of their life cycle. In this context, a new aquatic hyphomycete was isolated from decaying wood in a freshwater habitat in Jiangxi Province, China. New information: Dictyochaetajiangxiensis sp. nov., a new aquatic hyphomycete, is characterised by its unbranched, septate, base-fertile conidiophores with multisepta and single phialide at the apex, brown, sterile seta, monophialidic, subcylindrical conidiogenous cells narrowing below the funnel-shaped collarette, hyaline, unicellular, thin-walled, smooth, guttulate, falcate to subclavate conidia narrowly rounded at both ends with hair-like appendages. Phylogenetically, the new species Dictyochaetajiangxiensis clustered together with Dictyochaetabrevis MFLU 19-0216 in a well-supported clade, but formed a separate branch. In order to better define the taxonomic status of the new species, a phylogenetic tree of most closely-related taxa in Chaetosphaeriaceae was established, based on multi-locus sequences (ITS and LSU). The novel species is described and illustrated. Newly-generated molecular data of Dictyochaetajiangxiensis is also provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA