Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 236(2): 671-683, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751540

RESUMO

Knowledge about the distribution and local diversity patterns of arbuscular mycorrhizal (AM) fungi are limited for extreme environments such as the Arctic, where most studies have focused on spore morphology or root colonization. We here studied the joint effects of plant species identity and elevation on AM fungal distribution and diversity. We sampled roots of 19 plant species in 18 locations in Northeast Greenland, using next generation sequencing to identify AM fungi. We studied the joint effect of plant species, elevation and selected abiotic conditions on AM fungal presence, richness and composition. We identified 29 AM fungal virtual taxa (VT), of which six represent putatively new VT. Arbuscular mycorrhizal fungal presence increased with elevation, and as vegetation cover and the active soil layer decreased. Arbuscular mycorrhizal fungal composition was shaped jointly by elevation and plant species identity. We demonstrate that the Arctic harbours a relatively species-rich and nonrandomly distributed diversity of AM fungi. Given the high diversity and general lack of knowledge exposed herein, we encourage further research into the diversity, drivers and functional role of AM fungi in the Arctic. Such insight is urgently needed for an area with some of the globally highest rates of climate change.


Assuntos
Micobioma , Micorrizas , Micorrizas/genética , Raízes de Plantas/microbiologia , Plantas , Solo , Microbiologia do Solo
2.
Ecol Evol ; 10(16): 8989-9002, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884673

RESUMO

How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.

3.
Mol Ecol ; 29(14): 2736-2746, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32562300

RESUMO

Understanding the role of interspecific interactions in shaping ecological communities is one of the central goals in community ecology. In fungal communities, measuring interspecific interactions directly is challenging because these communities are composed of large numbers of species, many of which are unculturable. An indirect way of assessing the role of interspecific interactions in determining community structure is to identify the species co-occurrences that are not constrained by environmental conditions. In this study, we investigated co-occurrences among root-associated fungi, asking whether fungi co-occur more or less strongly than expected based on the environmental conditions and the host plant species examined. We generated molecular data on root-associated fungi of five plant species evenly sampled along an elevational gradient at a high arctic site. We analysed the data using a joint species distribution modelling approach that allowed us to identify those co-occurrences that could be explained by the environmental conditions and the host plant species, as well as those co-occurrences that remained unexplained and thus more probably reflect interactive associations. Our results indicate that not only negative but also positive interactions play an important role in shaping microbial communities in arctic plant roots. In particular, we found that mycorrhizal fungi are especially prone to positively co-occur with other fungal species. Our results bring new understanding to the structure of arctic interaction networks by suggesting that interactions among root-associated fungi are predominantly positive.


Assuntos
Micobioma , Micorrizas , Raízes de Plantas/microbiologia , Regiões Árticas , DNA Fúngico/genética , Ecologia , Meio Ambiente , Micobioma/genética , Micorrizas/genética
4.
Mol Ecol Resour ; 20(1): 256-267, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31293086

RESUMO

The accurate quantification of eukaryotic species abundances from bulk samples remains a key challenge for community ecology and environmental biomonitoring. We resolve this challenge by combining shotgun sequencing, mapping to reference DNA barcodes or to mitogenomes, and three correction factors: (a) a percent-coverage threshold to filter out false positives, (b) an internal-standard DNA spike-in to correct for stochasticity during sequencing, and (c) technical replicates to correct for stochasticity across sequencing runs. The SPIKEPIPE pipeline achieves a strikingly high accuracy of intraspecific abundance estimates (in terms of DNA mass) from samples of known composition (mapping to barcodes R2  = .93, mitogenomes R2  = .95) and a high repeatability across environmental-sample replicates (barcodes R2  = .94, mitogenomes R2  = .93). As proof of concept, we sequence arthropod samples from the High Arctic, systematically collected over 17 years, detecting changes in species richness, species-specific abundances, and phenology. SPIKEPIPE provides cost-efficient and reliable quantification of eukaryotic communities.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Eucariotos/classificação , Eucariotos/genética , Metagenômica/métodos , Animais , Biodiversidade , DNA/genética , Metagenômica/instrumentação
5.
Mol Ecol ; 28(2): 318-335, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418699

RESUMO

Pollination is an ecosystem function of global importance. Yet, who visits the flower of specific plants, how the composition of these visitors varies in space and time and how such variation translates into pollination services are hard to establish. The use of DNA barcodes allows us to address ecological patterns involving thousands of taxa that are difficult to identify. To clarify the regional variation in the visitor community of a widespread flower resource, we compared the composition of the arthropod community visiting species in the genus Dryas (mountain avens, family Rosaceae), throughout Arctic and high-alpine areas. At each of 15 sites, we sampled Dryas visitors with 100 sticky flower mimics and identified specimens to Barcode Index Numbers (BINs) using a partial sequence of the mitochondrial COI gene. As a measure of ecosystem functioning, we quantified variation in the seed set of Dryas. To test for an association between phylogenetic and functional diversity, we characterized the structure of local visitor communities with both taxonomic and phylogenetic descriptors. In total, we detected 1,360 different BINs, dominated by Diptera and Hymenoptera. The richness of visitors at each site appeared to be driven by local temperature and precipitation. Phylogeographic structure seemed reflective of geological history and mirrored trans-Arctic patterns detected in plants. Seed set success varied widely among sites, with little variation attributable to pollinator species richness. This pattern suggests idiosyncratic associations, with function dominated by few and potentially different taxa at each site. Taken together, our findings illustrate the role of post-glacial history in the assembly of flower-visitor communities in the Arctic and offer insights for understanding how diversity translates into ecosystem functioning.


Assuntos
Artrópodes/fisiologia , Ecossistema , Polinização/fisiologia , Rosaceae/intoxicação , Animais , Regiões Árticas , Artrópodes/genética , Código de Barras de DNA Taxonômico , Flores/genética , Flores/crescimento & desenvolvimento , Modelos Biológicos , Filogenia , Reprodução , Rosaceae/crescimento & desenvolvimento , Rosaceae/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento
6.
Mol Ecol ; 28(2): 266-280, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230073

RESUMO

Analysing the structure and dynamics of biotic interaction networks and the processes shaping them is currently one of the key fields in ecology. In this paper, we develop a novel approach to gut content analysis, thereby deriving a new perspective on community interactions and their responses to environment. For this, we use an elevational gradient in the High Arctic, asking how the environment and species traits interact in shaping predator-prey interactions involving the wolf spider Pardosa glacialis. To characterize the community of potential prey available to this predator, we used pitfall trapping and vacuum sampling. To characterize the prey actually consumed, we applied molecular gut content analysis. Using joint species distribution models, we found elevation and vegetation mass to explain the most variance in the composition of the prey community locally available. However, such environmental variables had only a small effect on the prey community found in the spider's gut. These observations indicate that Pardosa exerts selective feeding on particular taxa irrespective of environmental constraints. By directly modelling the probability of predation based on gut content data, we found that neither trait matching in terms of predator and prey body size nor phylogenetic or environmental constraints modified interaction probability. Our results indicate that taxonomic identity may be more important for predator-prey interactions than environmental constraints or prey traits. The impact of environmental change on predator-prey interactions thus appears to be indirect and mediated by its imprint on the community of available prey.


Assuntos
Artrópodes/fisiologia , DNA/isolamento & purificação , Ecologia , Filogenia , Animais , Artrópodes/genética , Artrópodes/metabolismo , DNA/genética , Código de Barras de DNA Taxonômico/métodos , Dieta , Comportamento Alimentar , Cadeia Alimentar , Conteúdo Gastrointestinal/química , Comportamento Predatório/fisiologia
7.
New Phytol ; 220(2): 517-525, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035303

RESUMO

Incompleteness of reference sequence databases and unresolved taxonomic relationships complicates taxonomic placement of fungal sequences. We developed Protax-fungi, a general tool for taxonomic placement of fungal internal transcribed spacer (ITS) sequences, and implemented it into the PlutoF platform of the UNITE database for molecular identification of fungi. With empirical data on root- and wood-associated fungi, Protax-fungi reliably identified (with at least 90% identification probability) the majority of sequences to the order level but only around one-fifth of them to the species level, reflecting the current limited coverage of the databases. Protax-fungi outperformed the Sintax and Rdb classifiers in terms of increased accuracy and decreased calibration error when applied to data on mock communities representing species groups with poor sequence database coverage. We applied Protax-fungi to examine the internal consistencies of the Index Fungorum and UNITE databases. This revealed inconsistencies in the taxonomy database as well as mislabelling and sequence quality problems in the reference database. The according improvements were implemented in both databases. Protax-fungi provides a robust tool for performing statistically reliable identifications of fungi in spite of the incompleteness of extant reference sequence databases and unresolved taxonomic relationships.


Assuntos
DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Internet , Sequência de Bases , Bases de Dados Genéticas , Raízes de Plantas/microbiologia , Madeira/microbiologia
8.
J Anim Ecol ; 87(3): 801-812, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29417993

RESUMO

Within natural communities, different taxa display different dynamics in time. Why this is the case we do not fully know. This thwarts our ability to predict changes in community structure, which is important for both the conservation of rare species in natural communities and for the prediction of pest outbreaks in agriculture. Species sharing phylogeny, natural enemies and/or life-history traits have been hypothesized to share similar temporal dynamics. We operationalized these concepts into testing whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among herbivorous community members. Focusing on two similar datasets from different geographical regions (Finland and Japan), we used asymmetric eigenvector maps as temporal variables to characterize species- and community-level dynamics of specialist insect herbivores on oak (Quercus). We then assessed whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among taxa. Species-specific temporal dynamics varied widely, ranging from directional decline or increase to more complex patterns. Phylogeny was a clear predictor of similarity in temporal dynamics at the Finnish site, whereas for the Japanese site, the data were uninformative regarding a phylogenetic imprint. Voltinism, feeding guild and parasitoid overlap explained little variation at either location. Despite the rapid temporal dynamics observed at the level of individual species, these changes did not translate into any consistent temporal changes at the community level in either Finland or Japan. Overall, our findings offer no direct support for the notion that species sharing natural enemies and/or life-history traits would be characterized by similar temporal dynamics, but reveal a strong imprint of phylogenetic relatedness. As this phylogenetic signal cannot be attributed to guild, voltinism or parasitoids, it will likely derive from shared microhabitat, microclimate, anatomy, physiology or behaviour. This has important implications for predicting insect outbreaks and for informing insect conservation. We hope that future studies will assess the generality of our findings across plant-feeding insect communities and beyond, and establish the more precise mechanism(s) underlying the phylogenetic imprint.


Assuntos
Herbivoria , Insetos/fisiologia , Características de História de Vida , Filogenia , Quercus , Animais , Finlândia , Insetos/classificação , Japão
9.
Genetics ; 197(3): 1025-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814465

RESUMO

Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56°N to latitude 67°N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species.


Assuntos
Evolução Molecular , Genes de Plantas , Picea/genética , Proteínas de Plantas/genética , Teorema de Bayes , Análise por Conglomerados , Simulação por Computador , Demografia , Regulação da Expressão Gênica de Plantas , Frequência do Gene/genética , Loci Gênicos , Genética Populacional , Geografia , Modelos Lineares , Desequilíbrio de Ligação/genética , Nucleotídeos/genética , Picea/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Sibéria
10.
PLoS One ; 8(4): e58073, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23620722

RESUMO

Non-indigenous species (NIS) are species living outside their historic or native range. Invasive NIS often cause severe environmental impacts, and may have large economical and social consequences. Elodea (Hydrocharitaceae) is a New World genus with at least five submerged aquatic angiosperm species living in fresh water environments. Our aim was to survey the geographical distribution of cpDNA haplotypes within the native and introduced ranges of invasive aquatic weeds Elodea canadensis and E. nuttallii and to reconstruct the spreading histories of these invasive species. In order to reveal informative chloroplast (cp) genome regions for phylogeographic analyses, we compared the plastid sequences of native and introduced individuals of E. canadensis. In total, we found 235 variable sites (186 SNPs, 47 indels and two inversions) between the two plastid sequences consisting of 112,193 bp and developed primers flanking the most variable genomic areas. These 29 primer pairs were used to compare the level and pattern of intraspecific variation within E. canadensis to interspecific variation between E. canadensis and E. nuttallii. Nine potentially informative primer pairs were used to analyze the phylogeographic structure of both Elodea species, based on 70 E. canadensis and 25 E. nuttallii individuals covering native and introduced distributions. On the whole, the level of variation between the two Elodea species was 53% higher than that within E. canadensis. In our phylogeographic analysis, only a single haplotype was found in the introduced range in both species. These haplotypes H1 (E. canadensis) and A (E. nuttallii) were also widespread in the native range, covering the majority of native populations analyzed. Therefore, we were not able to identify either the geographic origin of the introduced populations or test the hypothesis of single versus multiple introductions. The divergence between E. canadensis haplotypes was surprisingly high, and future research may clarify mechanisms that structure native E. canadensis populations.


Assuntos
Organismos Aquáticos/genética , DNA de Cloroplastos/genética , Hydrocharitaceae/genética , Espécies Introduzidas , Plantas Daninhas/genética , Plastídeos/genética , Sequência de Bases , Europa (Continente) , Genoma de Cloroplastos/genética , Geografia , Haplótipos/genética , Repetições de Microssatélites/genética , Mutação/genética , Polimorfismo Genético , Estados Unidos
11.
Gene ; 508(1): 96-105, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22841789

RESUMO

Elodea canadensis is an aquatic angiosperm native to North America. It has attracted great attention due to its invasive nature when transported to new areas in its non-native range. We have determined the complete nucleotide sequence of the chloroplast (cp) genome of Elodea. Taxonomically Elodea is a basal monocot, and only few monocot cp genomes representing early lineages of monocots have been sequenced so far. The genome is a circular double-stranded DNA molecule 156,700 bp in length, and has a typical structure with large (LSC 86,194 bp) and small (SSC 17,810 bp) single-copy regions separated by a pair of inverted repeats (IRs 26,348 bp each). The Elodea cp genome contains 113 unique genes and 16 duplicated genes in the IR regions. A comparative analysis showed that the gene order and organization of the Elodea cp genome is almost identical to that of Amborella trichopoda, a basal angiosperm. The structure of IRs in Elodea is unique among monocot species with the whole cp genome sequenced. In Elodea and another monocot Lemna minor the borders between IRs and LSC are located upstream of rps 19 gene and downstream of trnH-GUG gene, while in most monocots, IR has extended to include both trnH and rps 19 genes. A phylogenetic analysis conducted using Bayesian method, based on the DNA sequences of 81 chloroplast genes from 17 monocot taxa provided support for the placement of Elodea together with Lemna as a basal monocot and the next diverging lineage of monocots after Acorales. In comparison with other monocots, the Elodea cp genome has gone through only few rearrangements or gene losses. IR of Elodea has a unique structure among the monocot species studied so far as its structure is similar to that of a basal angiosperm Amborella. This result together with phylogenetic analyses supports the placement of Elodea as a basal monocot to the next diverging lineage of monocots after Acorales. So far, only few cp genomes representing early lineages of monocots have been sequenced and, therefore, this study provides valuable information about the course of evolution in divergence of monocot lineages.


Assuntos
Cloroplastos/genética , Genes de Plantas , Genoma de Cloroplastos , Genomas de Plastídeos , Hydrocharitaceae/genética , Plastídeos/genética , Evolução Molecular , Genes de Cloroplastos , Filogenia , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...