Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 882: 163563, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084914

RESUMO

Water-soluble polymers (WSPs) like polyethylene oxide (PEO) have annual production volumes ranging from thousands to millions of tonnes and are used in a wide variety of applications that enable a release into the aquatic environment. Despite these facts, a lack of quantitative trace-analytical methods for WSPs prevents the comprehensive study of their environmental occurrence. Here, size exclusion chromatography was hyphenated with electrospray ionization high-resolution mass spectrometry. An all-ion fragmentation approach for the formation of diagnostic fragments independent of molecular weight, charge state, and ion species was used to quantify PEO and its derivatives in wastewater treatment plants (WWTPs) and surface water samples. Despite its inherent biodegradability, PEO concentrations found in the samples analysed ranged from 1 µg/L) and reached up to 20 µg/L (effluent) and 400 µg/L (influent) for WWTPs. A substantial shift in molecular weight ranges was observed between influent and effluent, pointing towards a molecular weight fraction between 1.3 and 4 kDa being dominant in the effluent. Due to an assumed size exclusion during sample enrichment, information on the MW-distribution of PEO is limited to MW < 55 kDa. The high concentrations widely detected for a readily biodegradable WSP such as PEO, raise strong concerns about the occurrence and fate of recalcitrant WSPs in the aquatic environment. The method presented herein may provide the tools necessary to assess the burden of these high production volume chemicals and the risk they may pose.

2.
Aquat Toxicol ; 245: 106120, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35183844

RESUMO

Continuously increasing plastic production causes a constant accumulation of microplastic particles (MPs) in the aquatic environment, especially in industrialized and urbanized areas with elevated wastewater discharges. This coincides with the release of persistent organic pollutants (polycyclic aromatic hydrocarbons (PAHs), pesticides) entering limnic ecosystems. Although the assessment of potential effects of environmental pollutants sorbed to MPs under chronic exposure scenarios seems vital, data on potential hazards and risk by combined exposure to pollutants and microplastics for aquatic vertebrates is still limited. Therefore, zebrafish (Danio rerio) were exposed over 21 days to the organophosphate insecticide chlorpyrifos (CPF; 10 and 100 ng/L) and the PAH benzo(k)fluoranthene (BkF; 0.78 and 50 µg/L) either dissolved directly in water or sorbed to different MPs (irregular polystyrene, spherical polymethyl methacrylate; ≤ 100 µm), where CPF was sorbed to polystyrene MPs and BkF was sorbed to polymethyl methacrylate MPs. Contaminant sorption to MPs and leaching were documented using GC-EI-MS; potential accumulation was studied in cryosections of the gastrointestinal tract. Enzymatic biomarkers and biotransformation were measured in liver and brain. Overall, exposure to non-contaminated MPs did not induce any adverse effects. Results of fluorescence tracking, CYP1A modulation by BkF as well as changes in acetylcholinesterase activity (AChE) by CPF were less pronounced when contaminants were sorbed to MPs, indicating reduced bioavailability of pollutants. Overall, following exposure to waterborne BkF, only minor amounts of parent BkF and biotransformation products were detected in zebrafish liver. Even high loads of MPs and sorbed contaminants did not induce adverse effects in zebrafish; thus, the potential threat of MPs as vectors for contaminant transfer in limnic ecosystems can be considered limited.


Assuntos
Clorpirifos , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Clorpirifos/metabolismo , Clorpirifos/toxicidade , Ecossistema , Fluorenos , Microplásticos , Plásticos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
3.
Sci Total Environ ; 816: 151640, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774627

RESUMO

Given the increasing amounts of plastic debris entering marine and freshwater ecosystems, there is a growing demand for environmentally relevant exposure scenarios to improve the risk assessment of microplastic particles (MPs) in aquatic environments. So far, data on adverse effects in aquatic organisms induced by naturally exposed MPs are scarce and controversially discussed. As a consequence, we investigated the potential role of MPs regarding the sorption and transfer of environmental contaminants under natural conditions. For this end, a mixture of four common polymer types (polyethylene, polypropylene, polystyrene, polyvinyl chloride) was exposed to natural surface water in a polluted stream for three weeks. Samples of water, MP mixture, sediment, and suspended matter were target-screened for the presence of pollutants using GC/LC-MS, resulting in up to 94 different compounds. Possible adverse effects were investigated using several biomarkers in early developmental stages of zebrafish (Danio rerio). Exposure to natural stream water samples significantly inhibited acetylcholinesterase activity, altered CYP450 induction and modified behavioral patterns of zebrafish. In contrast, effects by samples of both non-exposed MPs and exposed MPs in zebrafish were less prominent than effects by water samples. In fact, the analytical target screening documented only few compounds sorbed to natural particles and MPs. Regarding acute toxic effects, no clear differentiation between different MPs and natural particles could be made, suggesting that - upon exposure in natural water bodies - MPs seem to approximate the sorption behavior of natural particles, presumably to a large extent due to biofilm formation. Thus, if compared to natural inorganic particles, MPs most likely do not transfer elevated amounts of environmental pollutants to biota and, therefore, do not pose a specific additional threat to aquatic organisms.


Assuntos
Microplásticos , Poluentes Químicos da Água , Acetilcolinesterase , Adsorção , Animais , Ecossistema , Plásticos/toxicidade , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
4.
Sci Total Environ ; 802: 149799, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450436

RESUMO

Tire wear particles are not only the type of polymer particles most prevalent in the environment but also act as source of various organic micropollutants, many of which are likely still unknown. We extracted particles prepared from nine tires in artificial freshwater (28 d) with the goal to characterize leachables (max intensity >105 in artificial freshwater), which are tire-borne water contaminants. A subsequent extraction of these particles with acetone (3 h) was used to assess the long-term leaching potential. A suspect and nontarget screening in aliquots of each extract led to the detection of 214 organic substances of which 145 were classified as leachables. The intrinsic polarity of some leachables (mean log D (pH 7.4) 3.9), which facilitates an increased aquatic mobility, highlights their potential as environmental water contaminants. With N,N'-diphenylguanidine (DPG) and benzothiazole, two of the ten unequivocally identified leachables, are classified as potential persistent, mobile and toxic substance by the German Environment Agency. Of the identified chemicals DPG showed the highest intensities in aqueous extracts and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD), the precursor of 6-PPD-quinone, in acetone extracts. A comparison between the 69 detected suspects and 174 high-intensity signals (>106) detected in the nontarget screening led to an overlap of only 29 features. A detailed investigation of the remaining high-intensity suspects revealed the presence of 13 proposed DPG reaction products, further highlighting the chemical complexity of tires. Consequently, we conclude that there are many, often still unrecognized chemicals entering the aquatic environment through leaching from tire wear particles.


Assuntos
Poluentes Químicos da Água , Água , Espectrometria de Massas , Polímeros , Poluentes Químicos da Água/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-32768657

RESUMO

The continuously growing plastic production and incomplete recycling processes open manifold entry routes for microplastic particles (MPs) into the environment. Since knowledge on trophic transfer of contaminants sorbed to MPs is still insufficient for freshwater systems, the transfer of the model pollutant benzo(k)fluoranthene (BkF) sorbed to polymethyl methacrylate (PMMA) particles in a limnic food web was investigated: Two freshwater invertebrates (Daphnia magna and Chironomus riparius larvae) were selected and either left untreated, exposed to pristine PMMA, PMMA-associated BkF, or exposed to dissolved BkF (BkFaq). As second-level consumers, zebrafish (Danio rerio) were fed twice daily with pre-treated invertebrates over two days. Induction of hepatic cytochrome P450 by BkF was determined as 7-ethoxy-O-resorufin deethylase (EROD) activity. Both invertebrate species readily ingested PMMA particles, tracked via fluorescence microscopy and accumulated BkFaq, measured via GC-MS. Fluorescence signals in gastrointestinal tracts of zebrafish were quantified with confocal laser scanning microscopy (CLSM). The fluorescence signal in gastrointestinal tracts of zebrafish was not altered, whereas, EROD activity was significantly induced when zebrafish were fed with Chironomus riparius, pre-exposed to BkFaq. Trophic exposure scenarios with BkF sorbed to PMMA did not result in any alterations of investigated endpoints in both invertebrate species and zebrafish compared to controls. Given that BkF amounts were in the low ng-range, as detected by GC-MS, the transport of MP-sorbed BkF to zebrafish was less effective than direct exposure to waterborne BkFaq, and the potential threat of trophic transfer of substances such as BkF in limnic food webs may have been overestimated.


Assuntos
Daphnia/crescimento & desenvolvimento , Fluorenos/toxicidade , Cadeia Alimentar , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Citocromo P-450 CYP1A1/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo
6.
Water Res ; 181: 115931, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32505887

RESUMO

Synthetic polymers have been one of the defining environmental topics of the last decade. Synthetic polymers in the environment are usually classified by their size. They encompass the widely discussed size fractions of macroplastic, microplastic, and nanoplastic. Water-soluble polymers (WSPs), however, are mostly absent in this discussion. In this paper, we argue that WSPs are produced in large quantities and have many applications that facilitate a discharge into the environment, where their fate and impact remain mostly unclear. We argue that there are yet no suitable analytical methods for the quantification of WSPs in environmental matrices and propose an analytical method that utilizes size exclusion chromatography - mass spectrometry to detect and potentially also quantify WSPs through specific fragments generated by in-source fragmentation. With the detection of polyethylene glycol in a wastewater treatment plant effluent and a surface water sample we provide a first prove of principle for the applicability of this novel analytical approach to WSPs. Ultimately, we conclude that WSPs are currently in a similar position as MP were in the advent of their investigation: We know of an environmental contamination but are uncertain of its extent and impact and still lack the tools to investigate them thoroughly.


Assuntos
Poluentes Químicos da Água , Água , Monitoramento Ambiental , Plásticos , Polímeros , Águas Residuárias
7.
Anal Bioanal Chem ; 410(25): 6343-6352, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29959485

RESUMO

There is a high demand for easy, cheap, comparable, and robust methods for microplastic (MP) analysis, due to the ever-increasing public and scientific interest in (micro-) plastic pollution in the environment. Today, a multitude of methodologies for sampling, sample preparation, and analysis of MPs are in use. This feature article deals with the most prominent detection methods as well as with sampling strategies and sample preparation techniques. Special emphasis is on their benefits and challenges. Thus, spectroscopic methods, coupled with microscopy, require time-consuming sample preparation and extended measurement times, whereas thermo-analytical methods are faster but lack the ability to determine the size distribution in samples. To that effect, most of the described methods are applicable depending on the defined analytical question. Graphical abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA