Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photoacoustics ; 10: 54-64, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29988890

RESUMO

MultiSpectral Optoacoustic Tomography (MSOT) is an emerging imaging technology that allows for data acquisition at high spatial and temporal resolution. These imaging characteristics are advantageous for Dynamic Contrast Enhanced (DCE) imaging that can assess the combination of vascular flow and permeability. However, the quantitative analysis of DCE MSOT data has not been possible due to complications caused by wavelength-dependent light attenuation and variability in light fluence at different anatomical locations. In this work we present a new method for the quantitative analysis of DCE MSOT data that is not biased by light fluence. We have named this method the two-compartment linear standard model (2C-LSM) for DCE MSOT.

2.
PLoS One ; 12(6): e0178641, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28605395

RESUMO

BACKGROUND/AIMS: Studies of human cadaveric pancreas specimens indicate that pancreas inflammation plays an important role in type 1 diabetes pathogenesis. Due to the inaccessibility of pancreas in living patients, imaging technology to visualize pancreas inflammation is much in need. In this study, we investigated the feasibility of utilizing ultrasound imaging to assess pancreas inflammation longitudinally in living rats during the progression leading to type 1 diabetes onset. METHODS: The virus-inducible BBDR type 1 diabetes rat model was used to systematically investigate pancreas changes that occur prior to and during development of autoimmunity. The nearly 100% diabetes incidence upon virus induction and the highly consistent time course of this rat model make longitudinal imaging examination possible. A combination of histology, immunoblotting, flow cytometry, and ultrasound imaging technology was used to identify stage-specific pancreas changes. RESULTS: Our histology data indicated that exocrine pancreas tissue of the diabetes-induced rats underwent dramatic changes, including blood vessel dilation and increased CD8+ cell infiltration, at a very early stage of disease initiation. Ultrasound imaging data revealed significant acute and persistent pancreas inflammation in the diabetes-induced rats. The pancreas micro-vasculature was significantly dilated one day after diabetes induction, and large blood vessel (superior mesenteric artery in this study) dilation and inflammation occurred several days later, but still prior to any observable autoimmune cell infiltration of the pancreatic islets. CONCLUSIONS: Our data demonstrate that ultrasound imaging technology can detect pancreas inflammation in living rats during the development of type 1 diabetes. Due to ultrasound's established use as a non-invasive diagnostic tool, it may prove useful in a clinical setting for type 1 diabetes risk prediction prior to autoimmunity and to assess the effectiveness of potential therapeutics.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/patologia , Pancreatite/diagnóstico por imagem , Pancreatite/patologia , Ultrassonografia , Animais , Apoptose , Resistência Capilar , Caspase 3/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/etiologia , Modelos Animais de Doenças , Humanos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Microvasos , Pâncreas/irrigação sanguínea , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/complicações , Pancreatite/metabolismo , Prognóstico , Ratos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Ultrassonografia/métodos
4.
Oncoscience ; 3(3-4): 98-108, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226983

RESUMO

Acoustically stimulated microbubbles have been demonstrated to perturb endothelial cells of the vasculature resulting in biological effects. In the present study, vascular and tumor response to ultrasound-stimulated microbubble and radiation treatment was investigated in vivo to identify effects on the blood vessel endothelium. Mice bearing breast cancer tumors (MDA-MB-231) were exposed to ultrasound after intravenous injection of microbubbles at different concentrations, and radiation at different doses (0, 2, and 8 Gy). Mice were sacrificed 12 and 24 hours after treatment for histopathological analysis. Tumor growth delay was assessed for up to 28 days after treatment. The results demonstrated additive antitumor and antivascular effects when ultrasound stimulated microbubbles were combined with radiation. Results indicated tumor cell apoptosis, vascular leakage, a decrease in tumor vasculature, a delay in tumor growth and an overall tumor disruption. When coupled with radiation, ultrasound-stimulated microbubbles elicited synergistic anti-tumor and antivascular effects by acting as a radioenhancing agent in breast tumor blood vessels. The present study demonstrates ultrasound driven microbubbles as a novel form of targeted antiangiogenic therapy in a breast cancer xenograft model that can potentiate additive effects to radiation in vivo.

5.
J Biomed Opt ; 16(8): 086013, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21895325

RESUMO

Multiphoton microscopy has been shown to be a useful tool in studying drug distribution in biological tissues. In addition, fluorescence lifetime imaging provides information about the structure and dynamics of fluorophores based on their fluorescence lifetimes. Fluorescein, a commonly used fluorescent probe, is metabolized within liver cells to fluorescein mono-glucuronide, which is also fluorescent. Fluorescein and its glucuronide have similar excitation and emission spectra, but different fluorescence lifetimes. In this study, we employed multiphoton fluorescence lifetime imaging to study the distribution and metabolism of fluorescein and its metabolite in vivo in rat liver. Fluorescence lifetime values in vitro were used to interpret in vivo data. Our results show that the mean fluorescence lifetimes of fluorescein and its metabolite decrease over time after injection of fluorescein in three different regions of the liver. In conclusion, we have demonstrated a novel method to study a fluorescent compound and metabolite in vivo using multiphoton fluorescence lifetime imaging.


Assuntos
Fluoresceínas/farmacocinética , Fígado/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Células Acinares , Animais , Bile/química , Bile/metabolismo , Fluoresceínas/análise , Histocitoquímica , Fígado/química , Masculino , Modelos Químicos , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...