Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-12, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520169

RESUMO

Interleukin-6 (IL-6) is a cytokine that involved in the different phases of wound healing. It is responsible for promoting inflammation, regulating tissue repair scar formation, stimulating the production of extracellular matrix components and recruiting immune cells to the wound site. Therefore, suppressing IL-6 is beneficial for wound healing. However, no small molecules are currently available in the market against the IL-6. As a result, this research gap motivates us to find a potential inhibitor. This study aimed to investigate the wound healing potential of novel ß-cycloidal-derived mono-carbonyl curcumin analogs reported in the literature through screening a series of computational studies. The calculated pIC50 value of 18 compounds (below 10) showed that all compounds may have potential therapeutic efficacy. Molecular docking studies revealed that compound C12 (-45.6044 kcal/mol) bound most strongly in the active site of IL-6 compared to the FDA-approved drug clindamycin (-42.3223). The Molecular Dynamic (MD) simulation displayed that lead compound C12 had the highest stability in the active site of IL-6 compared to the reference drug clindamycin. Furthermore, MMGBSA results indicated that C12 (-20.28 kcal/mol) had the highest binding energy compared to clindamycin (-8.36 kcal/mol). The ADMET analysis predicted that C12 are favourable for drug candidates. This study recommended compound C12 as a lead IL-6 inhibitor for future testing and development as therapeutics for wound healing.Communicated by Ramaswamy H. Sarma.

2.
PLoS One ; 19(3): e0299238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483871

RESUMO

BACKGROUND: Currently, there is no antiviral medication for dengue, a potentially fatal tropical infectious illness spread by two mosquito species, Aedes aegypti and Aedes albopictus. The RdRp protease of dengue virus is a potential therapeutic target. This study focused on the in silico drug discovery of RdRp protease inhibitors. METHODS: To assess the potential inhibitory activity of 29 phenolic acids from Theobroma cacao L. against DENV3-NS5 RdRp, a range of computational methods were employed. These included docking, drug-likeness analysis, ADMET prediction, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The aim of these studies was to confirm the stability of the ligand-protein complex and the binding pose identified during the docking experiment. RESULTS: Twenty-one compounds were found to have possible inhibitory activities against DENV according to the docking data, and they had a binding affinity of ≥-37.417 kcal/mol for DENV3- enzyme as compared to the reference compound panduratin A. Additionally, the drug-likeness investigation produced four hit compounds that were subjected to ADMET screening to obtain the lead compound, catechin. Based on ELUMO, EHOMO, and band energy gap, the DFT calculations showed strong electronegetivity, favouravle global softness and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups for catechin. The MD simulation result also demonstrated favourable RMSD, RMSF, SASA and H-bonds in at the binding pocket of DENV3-NS5 RdRp for catechin as compared to panduratin A. CONCLUSION: According to the present findings, catechin showed high binding affinity and sufficient drug-like properties with the appropriate ADMET profiles. Moreover, DFT and MD studies further supported the drug-like action of catechin as a potential therapeutic candidate. Therefore, further in vitro and in vivo research on cocoa and its phytochemical catechin should be taken into consideration to develop as a potential DENV inhibitor.


Assuntos
Aedes , Cacau , Catequina , Chalconas , Dengue , Animais , Peptídeo Hidrolases , Simulação de Dinâmica Molecular , Catequina/farmacologia , Endopeptidases , Fenóis , RNA Polimerase Dependente de RNA , Simulação de Acoplamento Molecular
3.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676311

RESUMO

Dengue fever is now one of the major global health concerns particularly for tropical and sub-tropical countries. However, there has been no FDA approved medication to treat dengue fever. Researchers are looking into DENV NS5 RdRp protease as a potential therapeutic target for discovering effective anti-dengue agents. The aim of this study to discover dengue virus inhibitor from a set of five compounds from Momordica charantia L. using a series of in-silico approaches. The compounds were docked into the active area of the DENV-2 NS5 RdRp protease to obtain the hit compounds. The successful compounds underwent additional testing for a study on drug-likeness similarity. Our study obtained Momordicoside-I as a lead compound which was further exposed to the Cytochrome P450 (CYP450) toxicity analysis to determine the toxicity based on docking scores and drug-likeness studies. Moreover, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties for the lead compound. Moreover, the lead compound was next subjected to molecular dynamic simulation for 200 ns in order to confirm the stability of the docked complex and the binding posture discovered during docking experiment. Overall, the lead compound has demonstrated good medication like qualities, non-toxicity, and significant binding affinity towards the DENV-2 RdRp enzyme.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; 41(24): 14904-14913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995164

RESUMO

Due to the rising increase in infectious diseases brought on by bacteria and anti-bacterial drug resistance, antibacterial therapy has become difficult. The majority of first-line antibiotics are no longer effective against numerous germs, posing a new hazard to global human health in the 21st century. Through the drug-likeness screening, 184 usnic acid derivatives were selected from an in-house database of 340 usnic acid compounds. The pharmacokinetics (ADMET) prediction produced fifteen hit compounds, of which the lead molecule was subsequently obtained through a molecular docking investigation. The lead compounds, labelled compound-277 and compound-276, respectively, with the substantial binding affinity towards the enzymes were obtained through further docking simulation on the DNA gyrase and DNA topoisomerase proteins. Additionally, molecular dynamic (MD) simulation was performed for 300 ns on the lead compounds in order to confirm the stability of the docked complexes and the binding pose discovered during docking tests. Due to their intriguing pharmacological characteristics, these substances may be promising therapeutic candidate for anti-bacterial medication.Communicated by Ramaswamy H. Sarma.


Assuntos
DNA Girase , DNA Topoisomerase IV , Humanos , DNA Girase/química , DNA Topoisomerase IV/metabolismo , Simulação de Acoplamento Molecular , Sítios de Ligação , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Bactérias/metabolismo , Simulação de Dinâmica Molecular , Antibacterianos/farmacologia , Antibacterianos/química
5.
Mol Biotechnol ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752937

RESUMO

The infection produced by the SARS-CoV-2 virus remains a significant health crisis worldwide. The lack of specific medications for COVID-19 necessitates a concerted effort to find the much-desired therapies for this condition. The main protease (Mpro) of SARS-CoV-2 is a promising target, vital for virus replication and transcription. In this study, fifty pyrazole derivatives were tested for their pharmacokinetics and drugability, resulting in eight hit compounds. Subsequent molecular docking simulations on SARS-CoV-2 main protease afforded two lead compounds with strong affinity at the active site. Additionally, the molecular dynamics (MD) simulations of lead compounds (17 and 39), along with binding free energy calculations, were accomplished to validate the stability of the docked complexes and the binding poses achieved in docking experiments. Based on these findings, compound 17 and 39, with their favorable projected pharmacokinetics and pharmacological characteristics, are the proposed potential antiviral candidates which require further investigation to be used as anti-SARS-CoV-2 medication.

6.
J Biomol Struct Dyn ; 41(23): 13923-13936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36786766

RESUMO

Since the first prevalence of COVID-19 in 2019, it still remains the most devastating pandemic throughout the world. The current research aimed to find potential natural products to inhibit the novel coronavirus and associated infection by MD simulation and network pharmacology approach. Molecular docking was performed for 39 natural products having potent anti-SARS-CoV activity. Five natural products showed high binding interaction with the viral main protease for the SARS-CoV-2 virus, where 3ß,12-diacetoxyabieta-6,8,11,13 tetraene showed stable binding in MD simulation until 100 ns. Both 3ß,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A targeted 11 common genes that are related to COVID-19 and interact with each other. Gene ontology development analysis further showed that all these 11 genes are attached to various biological processes. The KEGG pathway analysis also showed that the proteins that are targeted by 3ß,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A are associated with multiple pathways related to COVID-19 infection. Furthermore, the ADMET and MDS studies reveals 3ß,12-diacetoxyabieta-6,8,11,13 as the best-suited compound for oral drug delivery.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Produtos Biológicos/farmacologia , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia
7.
J Biomol Struct Dyn ; 41(21): 12186-12203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36645141

RESUMO

Dengue fever is a significant public health concern throughout the world, causing an estimated 500,000 hospitalizations and 20,000 deaths each year, despite the lack of effective therapies. The DENV-2 RdRp has been identified as a potential target for the development of new and effective dengue therapies. This research's primary objective was to discover an anti-DENV inhibitor using in silico ligand- and structure-based approaches. To begin, a ligand-based pharmacophore model was developed, and 130 distinct natural products (NPs) were screened. Docking of the pharmacophore-matched compounds were performed to the active site of DENV-2 RdRp protease . Eleven compounds were identified as potential DENV-2 RdRp inhibitors based on docking energy and binding interactions. ADMET and drug-likeness were done to predict their pharmacologic, pharmacokinetic, and drug-likeproperties . Compounds ranked highest in terms of pharmacokinetics and drug-like appearances were then subjected to additional toxicity testing to determine the leading compound. Additionally, MD simulation of the lead compound was performed to confirm the docked complex's stability and the binding site determined by docking. As a result, the lead compound (compound-108) demonstrated an excellent match to the pharmacophore, a strong binding contact and affinity for the RdRp enzyme, favourable pharmacokinetics, and drug-like characteristics. In summary, the lead compound identified in this study could be a possible DENV-2 RdRp inhibitor that may be further studied on in vitro and in vivo models to develop as a drug candidate.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , Farmacóforo , Simulação de Acoplamento Molecular , Produtos Biológicos/farmacologia , Ligantes , RNA Polimerase Dependente de RNA , Simulação de Dinâmica Molecular
8.
J Adv Vet Anim Res ; 8(3): 367-369, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34722734

RESUMO

Many countries of the world have been combating the new variant of severe acute respiratory syndrome coronavirus 2. Black fungus is an opportunistic foe that may cause fatal infection in immunocompromised and steroid-treated coronavirus disease 2019 (COVID-19) patients. The COVID-19 associated mucormycosis (CAM) is now a serious concern throughout the world, including many Asian countries. Therefore, along with early and accurate diagnostic facilities, special care, and prompt, but coordinated approach are recommended to combat the CAM in patients.

9.
Artigo em Inglês | MEDLINE | ID: mdl-24834098

RESUMO

Persicaria hydropiper (L.) Delarbre, belonging to Polygonaceae family, is a common weed found in most of the temperate countries including Bangladesh, China, Malaysia, and Japan. The plant is also referred to as "marsh pepper" or "smart weed." It appears to be a useful herb with evidence-based medicinal properties. The present work addresses the botanical description, traditional uses, phytochemistry, pharmacology, and toxicology of P. hydropiper. All plant parts have been commonly used in the traditional systems of medicines. Flavonoids are the major group of phytochemical components followed by drimane-type sesquiterpenes and sesquiterpenoids, as well as phenylpropanoids. Different extracts and plant parts showed remarkable pharmacological activities including antioxidant, antibacterial, antifungal, antihelminth, antifeedant, cytotoxicity, anti-inflammatory, antinociceptive, oestrogenicity, antifertility, antiadipogenicity, and neuroprotection. Mutagenicity and acute and subchronic toxicities of the plant were also reported. P. hydropiper has tremendous medicinal properties that could further be investigated for the development of evidence-based herbal products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...