Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102213, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779631

RESUMO

1,25-dihydroxyvitamin D (VD) regulates intestinal calcium absorption in the small intestine (SI) and also reduces risk of colonic inflammation and cancer. However, the intestine compartment-specific target genes of VD signaling are unknown. Here, we examined VD action across three functional compartments of the intestine using RNA-seq to measure VD-induced changes in gene expression and Chromatin Immunoprecipitation with next generation sequencing to measure vitamin D receptor (VDR) genomic binding. We found that VD regulated the expression of 55 shared transcripts in the SI crypt, SI villi, and in the colon, including Cyp24a1, S100g, Trpv6, and Slc30a10. Other VD-regulated transcripts were unique to the SI crypt (162 up, 210 down), villi (199 up, 63 down), or colon (102 up, 28 down), but this did not correlate with mRNA levels of the VDR. Furthermore, bioinformatic analysis identified unique VD-regulated biological functions in each compartment. VDR-binding sites were found in 70% of upregulated genes from the colon and SI villi but were less common in upregulated genes from the SI crypt and among downregulated genes, suggesting some transcript-level VD effects are likely indirect. Consistent with this, we show that VD regulated the expression of other transcription factors and their downstream targets. Finally, we demonstrate that compartment-specific VD-mediated gene expression was associated with compartment-specific VDR-binding sites (<30% of targets) and enrichment of intestinal transcription factor-binding motifs within VDR-binding peaks. Taken together, our data reveal unique spatial patterns of VD action in the intestine and suggest novel mechanisms that could account for compartment-specific functions of this hormone.


Assuntos
Receptores de Calcitriol , Vitamina D , Animais , Genômica , Intestinos , Camundongos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D3 24-Hidroxilase/genética
2.
Oncogene ; 40(41): 6034-6048, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453124

RESUMO

BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF-mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mouse models promotes rapid serrated tumor development and progression, and SMAD4 mutations co-occur in human patient tumors with BRAF-V600E mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis. SMAD4 loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic BRAF-V600E context, providing a model for MSS serrated cancers. Inactivation of Msh2 in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene Ctnnb1 (ß-catenin). Mouse models mimicking the oncogenic ß-catenin mutation show that the combination of three oncogenic mutations (Ctnnb1, Braf, and Smad4) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals BRAF-V600E mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFß pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína Smad4/metabolismo , Animais , Carcinogênese , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Camundongos
3.
Nat Commun ; 12(1): 2886, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001900

RESUMO

The brush border is comprised of microvilli surface protrusions on the apical surface of epithelia. This specialized structure greatly increases absorptive surface area and plays crucial roles in human health. However, transcriptional regulatory networks controlling brush border genes are not fully understood. Here, we identify that hepatocyte nuclear factor 4 (HNF4) transcription factor is a conserved and important regulator of brush border gene program in multiple organs, such as intestine, kidney and yolk sac. Compromised brush border gene signatures and impaired transport were observed in these tissues upon HNF4 loss. By ChIP-seq, we find HNF4 binds and activates brush border genes in the intestine and kidney. H3K4me3 HiChIP-seq identifies that HNF4 loss results in impaired chromatin looping between enhancers and promoters at gene loci of brush border genes, and instead enhanced chromatin looping at gene loci of stress fiber genes in the intestine. This study provides comprehensive transcriptional regulatory mechanisms and a functional demonstration of a critical role for HNF4 in brush border gene regulation across multiple murine epithelial tissues.


Assuntos
Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Mucosa Intestinal/metabolismo , Rim/metabolismo , Microvilosidades/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Saco Vitelino/metabolismo , Animais , Epitélio/metabolismo , Perfilação da Expressão Gênica/métodos , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Intestinos/ultraestrutura , Rim/ultraestrutura , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Mol Cell Biol ; 41(1)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33139494

RESUMO

Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.


Assuntos
Calcitriol/genética , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Animais , Calcitriol/metabolismo , Cálcio/metabolismo , Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Vitamina D/farmacologia
5.
Cell Rep ; 9(4): 1228-34, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25456125

RESUMO

Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs) arising in an XPC(-/-) background. XPC(-/-) cells lack global genome nucleotide excision repair (GG-NER), thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk.


Assuntos
Carcinoma de Células Escamosas/genética , Reparo do DNA/genética , Genoma Humano/genética , Heterocromatina/genética , Taxa de Mutação , Neoplasias Cutâneas/genética , Transcrição Gênica , Empacotamento do DNA/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células Germinativas/metabolismo , Humanos , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...