Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1208, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623023

RESUMO

Understanding characteristic energy scales is a fundamentally important issue in the study of strongly correlated systems. In multiband systems, an energy scale is affected not only by the effective Coulomb interaction but also by the Hund's coupling. Direct observation of such energy scale has been elusive so far in spite of extensive studies. Here, we report the observation of a kink structure in the low energy dispersion of NiS2-xSex and its characteristic evolution with x, by using angle resolved photoemission spectroscopy. Dynamical mean field theory calculation combined with density functional theory confirms that this kink originates from Hund's coupling. We find that the abrupt deviation from the Fermi liquid behavior in the electron self-energy results in the kink feature at low energy scale and that the kink is directly related to the coherence-incoherence crossover temperature scale. Our results mark the direct observation of the evolution of the characteristic temperature scale via kink features in the spectral function, which is the hallmark of Hund's physics in the multiorbital system.

2.
Sci Rep ; 8(1): 4661, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549304

RESUMO

Two dimensional layered organic-inorganic halide perovskites offer a wide variety of novel functionality such as solar cell and optoelectronics and magnetism. Self-assembly of these materials using solution process (ex. spin coating) makes crystalline thin films synthesized at ambient environment. However, flexibility of organic layer also poses a structure stability issue in perovskite thin films against environment factors (ex. moisture). In this study, we investigate the effect of solvents and moisture on structure and property in the (C6H5(CH2)2NH3)2(Cu, Mn)Cl4 (Cu-PEA, Mn-PEA) perovskite thin films spin-coated on Si wafer using three solvents (H2O, MeOH, MeOH + H2O). A combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) show that relative humidity (RH) has a profound effect on perovskite thin films during sample synthesis and storage, depending on the kind of solvent used. The ones prepared using water (Cu-PEA:H2O, Mn-PEA:H2O) show quite different behavior from the other cases. According to time-dependent XRD, reversible crystalline-amorphous transition takes place depending on RH in the former cases, whereas the latter cases relatively remain stable. It also turns out from XAS that Mn-PEA thin films prepared with solvents such as MeOH and MeOH + H2O are disordered to the depth of about 4 nm from surface.

3.
ACS Omega ; 3(9): 11624-11632, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459260

RESUMO

We investigated the crystal structure and magnetic structure in cobaltite-platinate double perovskite of La2CoPtO6, employing various techniques of X-ray diffraction, neutron diffraction, and the extended X-ray absorption fine structure analysis. It is shown that the crystal symmetry is maintained as P21/n in the temperature range of <500 °C, whereas the lattice constants and the Co-Co distances undergo a continuous structural evolution toward the high-symmetry phases with increasing temperature. The Co-O bonds were overall longer and had a larger degree of structural and thermal disorders than the Pt-O bonds. As for the magnetism, an antiferromagnetic order is stabilized in the Co2+ sublattice at temperatures below 28 K. It is demonstrated that owing to the substantial distortions (quantified by a distortion parameter Σ > 0.03 Å) of the Co-Co networks, the system is not subject to spin frustration effect. Details in the magnetic structure are determined; at 12 K, the Co magnetic moment was (0.8, 0, 2.7) Bohr magneton, the magnetic propagation vector was (-0.5, 0, 0.5), and the magnetic symmetry was preferably Γ1(Ag).

4.
Sci Rep ; 7(1): 4528, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674448

RESUMO

Ag5Pb2O6 has attracted attentions due to its novel nearly-free-electron superconductivity, but its electronic structure and orbital character of the Cooper-pair electrons remain controversial. Here, we present a method utilizing core-level photoemission to show that Pb 6s electrons dominate near the Fermi level. We observe a strongly asymmetric Pb 4 f 7/2 core-level spectrum, while a Ag 3d 5/2 spectrum is well explained by two symmetric peaks. The asymmetry in the Pb 4 f 7/2 spectrum originates from the local attractive interaction between conducting Pb 6s electrons and a Pb 4 f 7/2 core hole, which implies a dominant Pb 6s contribution to the metallic conduction. In addition, the observed Pb 4 f 7/2 spectrum is not explained by the well-known Doniach-Sunjic lineshape for a simple metal. The spectrum is successfully generated by employing a Pb 6s partial density of states from local density approximation calculations, thus confirming the Pb 6s dominant character and free-electron-like density of states of Ag5Pb2O6.

5.
Sci Rep ; 6: 39544, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000731

RESUMO

Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3.

6.
Inorg Chem ; 52(2): 953-64, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23297735

RESUMO

Rare-earth metal germanides with the general formula RE(4)Ge(7) (RE = La, Ce, Pr, Nd, Sm) have been synthesized using the In-flux technique. Their structures have been established from single-crystal and powder X-ray diffraction, and the structural elucidation has been aided by electron diffraction. These compounds represent superstructures of the α-ThSi(2) structure type through the long- and/or short-range vacancy ordering. RE(4)Ge(7) (RE = Pr, Nd, Sm) appear to be commensurately modulated 4-fold superstructure of REGe(2-x) (x = 1/4), while coexistence of commensurate and incommensurate modulation is revealed in the La- and Ce-analogues. These results shed more light on the structural evolution of the REGe(2-x) phases as function of the vacancy concentration and nature of the rare-earth metal. Measurements of the magnetic susceptibilities on well-characterized single-crystals show ferromagnetic, antiferromagnetic, and even spin-glass-like behaviors. Mean-field theory is used to evaluate the correlations between structural and magnetic property data. Measurements on the electrical resistivities and the heat capacities are also presented and discussed.

7.
J Phys Condens Matter ; 24(45): 456004, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23093046

RESUMO

Li(2)MnO(3) consists of a layered Mn honeycomb lattice separated by a single layer of LiO(6) octahedra along the c-axis. By using single crystal Li(2)MnO(3) samples, we have examined the physical properties and carried out both powder and single crystal neutron diffraction studies to determine that Mn moments order antiferromagnetically at T(N) = 36 K with an ordered magnetic moment of 2.3 µ(B) perpendicular to the ab plane. We have also discovered that about 35% of the full magnetic entropy is released in the supposedly simple paramagnetic phase, indicative of unusual spin dynamics at higher temperature.

8.
Inorg Chem ; 46(21): 8690-7, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17877339

RESUMO

The new binary compound Gd(3)Ge(4) has been synthesized and its structure has been determined from single-crystal X-ray diffraction. Gd(3)Ge(4) crystallizes in the orthorhombic space group Cmcm (No. 63) with unit cell parameters a = 4.0953(11) A, b = 10.735(3) A, c = 14.335(4) A, and Z = 4. Its structure can be described as corrugated layers of germanium atoms with gadolinium atoms enclosed between them. The bonding arrangement in Gd(3)Ge(4) can also be derived from that of the known compound GdGe (CrB type) through cleavage of the (infinity)(1)[Ge(2)] zigzag chains in GdGe and a subsequent insertion of an extra germanium atom between the resulting triangular fragments. Formally, these characteristics represent isotypism with the Er(3)Ge(4) type (Pearson's oC28). However, re-examination of the crystallography in the whole RE(3)Ge(4) series (RE = Y, Tb-Tm) revealed discrepancies and called into question the accuracy of the originally determined structures. This necessitated a new rationalization of the bonding, which is provided in the context of a comparative discussion concerning both the original and revised structure models, along with an analysis of the trends across the series. The temperature dependence of the magnetic susceptibility of Gd(3)Ge(4) shows that it is paramagnetic at room temperature and undergoes antiferromagnetic ordering below 29 K. Magnetization, resistivity, and calorimetry data for several other members of the RE(3)Ge(4) family are presented as well.

9.
Nat Mater ; 5(11): 881-6, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17028576

RESUMO

Spin glasses are founded in the frustration and randomness of microscopic magnetic interactions. They are non-ergodic systems where replica symmetry is broken. Although magnetic glassy behaviour has been observed in many colossal magnetoresistive manganites, there is no consensus that they are spin glasses. Here, an intriguing glass transition in (La,Pr,Ca)MnO3 is imaged using a variable-temperature magnetic force microscope. In contrast to the speculated spin-glass picture, our results show that the observed static magnetic configuration seen below the glass-transition temperature arises from the cooperative freezing of the first-order antiferromagnetic (charge ordered) to ferromagnetic transition. Our data also suggest that accommodation strain is important in the kinetics of the phase transition. This cooperative freezing idea has been applied to structural glasses including window glasses and supercooled liquids, and may be applicable across many systems to any first-order phase transition occurring on a complex free-energy landscape.

10.
Inorg Chem ; 45(18): 7286-94, 2006 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-16933930

RESUMO

The crystal structures and the magnetic properties of three new binary rare-earth intermetallic phases are reported. alpha-Sm3Ge5 and beta-Sm3Ge5 and Gd3Ge5 have been prepared from the corresponding elements through high-temperature reactions using the flux-growth method. The structures of the three compounds have been established using single-crystal X-ray diffraction: alpha-Sm3Ge5 crystallizes with its own type in the hexagonal space group P2c (No. 190) with cell parameters a = 6.9238(11) A, c = 8.491(3) A, and Z = 2, whereas beta-Sm3Ge5 adopts the face-centered orthorhombic Y3Ge5 type with space group Fdd2 (No. 43) and with cell parameters a = 5.8281(6) A, b = 17.476(2) A, c = 13.785(2) A, and Z = 8. The orthorhombic Gd3Ge5 with cell parameters a = 5.784(2) A, b = 17.355(6) A, and c = 13.785(5) A is isostructural with beta-Sm3Ge5. The structures of the title compounds can be described as AlB(2) and alpha-ThSi2 derivatives with long-range ordering of the germanium vacancies. Temperature-dependent DC magnetization (5-300 K) measurements show evidence of antiferromagnetic ordering below ca. 30 and 10 K for alpha-Sm3Ge5 and beta-Sm3Ge5, respectively. Gd3Ge5 undergoes two successive magnetic transitions below ca. 15 and 11 K. The temperature dependence of the resistivity and heat capacity of Gd3Ge5 are discussed as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...