Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 198: 101915, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32966834

RESUMO

While positive regulators of hippocampal long-term potentiation (LTP) have extensively been investigated, relatively little is known about the inhibitory regulators of LTP. We previously reported that Cyclin Y (CCNY), a member of cyclin family generally known to function in proliferating cells, is a novel postsynaptic protein that serves as a negative regulator of functional LTP. However, whether CCNY plays a role in structural LTP, which is mechanistically linked to functional LTP, and which mechanisms are involved in the CCNY-mediated suppression of LTP at the molecular level remain elusive. Here, we report that CCNY negatively regulates the plasticity-induced changes in spine morphology through the control of actin dynamics. We observed that CCNY directly binds to filamentous actin and interferes with LTP-induced actin polymerization as well as depolymerization by blocking the activation of cofilin, an actin-depolymerizing factor, thus resulting in less plastic spines and the impairment of structural LTP. These data suggest that CCNY acts as an inhibitory regulator for both structural and functional LTP by modulating actin dynamics through the cofilin-actin pathway. Collectively, our findings provide a mechanistic insight into the inhibitory modulation of hippocampal LTP by CCNY, highlighting a novel function of a cyclin family protein in non-proliferating neuronal cells.


Assuntos
Plasticidade Neuronal , Fatores de Despolimerização de Actina , Actinas , Ciclinas , Proteínas dos Microfilamentos , Sinapses
2.
Anim Cells Syst (Seoul) ; 24(6): 341-348, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33456718

RESUMO

Bafilomycin A1, a vacuolar H+-ATPase inhibitor, and botulinum toxin B and tetanus toxin, both vesicle fusion inhibitors, are widely known exocytosis blockers that have been used to inhibit the presynaptic release of neurotransmitters. However, protein trafficking mechanisms, such as the insertion of postsynaptic receptors and astrocytic glutamate-releasing channels into the plasma membrane, also require exocytosis. In our previous study, exocytosis inhibitors reduced the surface expression of astrocytic glutamate-releasing channels. Here, we further investigated whether exocytosis inhibitors influence the surface expression of postsynaptic receptors. Using pH-sensitive superecliptic pHluorin (SEP)-tagged postsynaptic glutamate receptors, including GluA1, GluA2, GluN1, and GluN2A, we found that bafilomycin A1, botulinum toxin B, and/or tetanus toxin reduce the SEP fluorescence of SEP-GluA1, SEP-GluA2, SEP-GluN1, and SEP-GluN2A. These findings indicate that presynaptic vesicle exocytosis inhibitors also affect the postsynaptic trafficking machinery for surface expression. Finally, this study provides profound insights assembling presynaptic, postsynaptic and astrocytic viewpoints into the interpretation of the data obtained using these synaptic vesicle exocytosis inhibitors.

3.
Sci Rep ; 5: 12624, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26220330

RESUMO

Cyclin Y (CCNY) is a member of the cyclin protein family, known to regulate cell division in proliferating cells. Interestingly, CCNY is expressed in neurons that do not undergo cell division. Here, we report that CCNY negatively regulates long-term potentiation (LTP) of synaptic strength through inhibition of AMPA receptor trafficking. CCNY is enriched in postsynaptic fractions from rat forebrain and is localized adjacent to postsynaptic sites in dendritic spines in rat hippocampal neurons. Using live-cell imaging of a pH-sensitive AMPA receptor, we found that during LTP-inducing stimulation, CCNY inhibits AMPA receptor exocytosis in dendritic spines. Furthermore, CCNY abolishes LTP in hippocampal slices. Taken together, our findings demonstrate that CCNY inhibits plasticity-induced AMPA receptor delivery to synapses and thereby blocks LTP, identifying a novel function for CCNY in post-mitotic cells.


Assuntos
Ciclinas/metabolismo , Exocitose/fisiologia , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Receptores de AMPA/metabolismo , Animais , Western Blotting , Células Cultivadas , Ciclinas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Microscopia Confocal , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Prosencéfalo/fisiologia , Interferência de RNA , Ratos Wistar , Imagem com Lapso de Tempo
4.
Korean J Physiol Pharmacol ; 17(5): 405-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24227940

RESUMO

We studied the sex different nicotine effect on evoked population spike amplitudes (ePSA) and connexin (Cx) expression in the hippocampus CA1 area of gerbils. Acute doses of nicotine bitartrate (0.5 mg/kg: NT-0.5) slightly reduced ePSA in males but markedly augmented that in females. Acute NT (5.0 mg/kg) markedly increased the ePSA in all gerbils. Unlike acute NT-0.5, repeated NT-0.5 injection (twice a day for 7 days) significantly increased the ePSA in males and slightly affected the NT-0.5 effect in females. The Cx36 and Cx43 expression levels as well as Cx expressing neuronal populations were significantly increased by repeated NT-0.5 in in both male and female gerbils, and particularly, Cx43 expression was somewhat prominent in females. These results demonstrated a sex difference with respect to the nicotine effect on hippocampal bisynaptic excitability, irrelevant to connexin expression.

5.
Mol Cells ; 30(3): 219-26, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20803089

RESUMO

Nicotine treatment has known to produce an inverse relationship between body weight and food intake in rodents. Present study determined the effect of repeated treatment with nicotine and withdrawal in control and obese mice, on: (1) body weight, caloric intake and energy expenditure; (2) hypothalamic neuropeptides mRNA expression; and (3) serum leptin. 21-week-old C57BL/6 mice (n = 65) received nicotine (3.0 mg/kg/day; 2 weeks) and saline (1 ml/kg/day; 2 weeks) subcutaneously. Animals were given either a normal-fat (10% kcal from fat, NF) or a high-fat diet (45% kcal from fat, HF) from the 12th week to 25th week. While, nicotine treatment for 14 days induced an increase in hypothalamic agouti-related protein, cocaine- and amphetamine- regulated transcript, pro-opiomelanocortin mRNA expressions, nicotine also produced a reducing effect in body weight gain and leptin concentration in NF mice. High-fat diet induced obese mice showed a blunted hypothalamic and leptin response to nicotine. Remarkable weight loss in obese mice was mediated not just by decreasing caloric intake, but also by increasing total energy expenditure (EE). During nicotine withdrawal period, weight gain occurred in NF and HF groups, which was ascribed to a decrease in EE rather than changes in caloric intake. Hypothalamic AgRP might play a role for maintaining energy balance under the nicotine-induced negative energy status.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Nicotina/administração & dosagem , Obesidade/metabolismo , Pró-Opiomelanocortina/biossíntese , Animais , Gorduras na Dieta/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Leptina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/efeitos adversos , Obesidade/sangue , Obesidade/induzido quimicamente , Obesidade/patologia , Pró-Opiomelanocortina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA