Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(21): 34671-34683, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809251

RESUMO

We built an improved 3D rendering framework to accurately visualize the complete appearance of effect coatings, including metallic effects, sparkle and iridescence. Spectral reflectance measurements and sparkle indexes from a commercially available multi-angle spectrophotometer (BYKmac-i) were used together with physics-based approaches, such as flake-based reflectance models, to implement efficiently the appearance reproduction from a small number of bidirectional measurement geometries. With this rendering framework, we rendered a series of effect coating samples on an iPad display, simulating how these samples would be viewed inside a Byko-spectra effect light booth. We validated the appearance fidelity through psychophysical methods. We asked observers to evaluate the most important visual attributes that directly affect the appearance of effect coatings, i.e., the color, the angular dependence of color (color flop) and the visual texture (sparkle and graininess). Observers were asked to directly compare the rendered samples with the real samples inside the Byko-spectra effect light booth. In this study, we first validated the accuracy of rendering the color flop of effect coatings by conducting two separate visual tests, using flat and curved samples respectively. The results show an improved accuracy when curved samples were used (acceptability of 93% vs 80%). Secondly, we validated the digital reproduction of both color and texture by using a set of 30 metallic samples, and by including texture in the rendering using a sparkle model. We optimized the model parameters based on sparkle measurement data from the BYK-mac I instrument and using a matrix-adjustment model for optimization. The results from the visual tests show that the visual acceptability of the rendering is high at 90%.

2.
J Opt Soc Am A Opt Image Sci Vis ; 38(3): 328-336, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690461

RESUMO

We validate a physically based and spectral rendering framework with improved color reproduction. With a recently developed model, we take into account both the colorimetric specifications of the rendering display as well as the spectral and angular characteristics of lighting and also the spectral reflectance of the objects. Therefore, it should provide much better color reproduction than those based on the common standard red, green, blue (sRGB) color space. In addition, it allows real-time rendering on modest hardware and displays. We evaluated the color reproduction of the new rendering framework by psychophysical tests using spectrophotometric measurements of 30 chromatic paint samples. They were rendered on an iPad display, as viewed inside the Byko-spectra effect light booth. We asked 16 observers to evaluate the color match by directly comparing the rendered samples with the physical samples, using two different psychophysical assessment methods. The color reproduction was found to be strongly improved with respect to results obtained with default sRGB color encoding space. The average color reproduction match was found to be equivalent to ΔE00=1.6, which is a small but noticeable color difference. In 80% of the visual assessments, the color reproduction was described as being at least as good as between "difference visible but still acceptable" and "difference visible, doubtful match."

3.
Materials (Basel) ; 12(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052399

RESUMO

In order to consider 3D objects from suitable Fused Deposition Modelling (FDM) printers as prototypes for the automotive sector, this sample must be able to reproduce textural effects (sparkle or graininess) or metallic or gonio-appearance to reinforce the attractive appeal of these materials. This study worked with two different commercial filaments: grey metallic PLA (poly(lactic acid)) and ABS (acrylonitrile-butadiene-styrene copolymer) with diffractive pigments. For both materials, a statistical design of experiments (DoE) was carried out to find the printing parameters effect on the final 3D-objects gonio-appearance. The selected printing parameters were printing speed (2 levels), layer height (2 levels) and sample thickness (3 levels). Twelve smooth square objects were printed from each material. The ABS-diffractive filaments achieved the most significant flop and higher sparkle values than metallic PLA. Graininess was high when working with PLA filaments instead of ABS. Layer height was the most significant parameter to maximize PLA objects' flop or sparkle effects. The best result was found when printing at 0.1 mm. For the ABS samples, the stronger flop and sparkle effects were achieved with the 50 mm/s printing speed, the 0.1 mm layer height and the lowest thickness level. This study shows the methodology to study the printing parameters effects and interactions to maximize the FDM-3D-objects gonio-appearance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA