Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mol Ecol ; 32(12): 3165-3181, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36934376

RESUMO

Mountains are renowned for their bountiful biodiversity. Explanations on the origin of such abundant life are usually regarded to their orogenic history. However, ancient mountain systems with geological stability also exhibit astounding levels of number of species and endemism, as illustrated by the Brazilian Quartzitic Mountains (BQM) in Eastern South America. Thus, cycles of climatic changes over the last couple million years are usually assumed to play an important role in the origin of mountainous biota. These climatic oscillations potentially isolated and reconnected adjacent populations, a phenomenon known as flickering connectivity, accelerating speciation events due to range fragmentation, dispersion, secondary contact, and hybridization. To evaluate the role of the climatic fluctuations on the diversification of the BQM biota, we estimated the ancient demography of distinct endemic species of animals and plants using hierarchical approximate Bayesian computation analysis and Ecological Niche Modelling. Additionally, we evaluated if climatic oscillations have driven a genetic spatial congruence in the genetic structure of codistributed species from the Espinhaço Range, one of the main BQM areas. Our results show that the majority of plant lineages underwent a synchronous expansion over the Last Glacial Maximum (LGM, c. 21 thousand years ago), although we could not obtain a clear demographic pattern for the animal lineages. We also obtained a signal of a congruent phylogeographic break between lineages endemic to the Espinhaço Range, suggesting how ancient climatic oscillations might have driven the evolutionary history of the Espinhaço's biota.


Assuntos
Variação Genética , Animais , Filogeografia , Filogenia , Teorema de Bayes , Brasil , Demografia
2.
Plants (Basel) ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448804

RESUMO

Stem succulence evolved independently in many plant lineages as an adaptation to arid environments. One of the most interesting cases is the convergence between Cactaceae and Euphorbia, which have anatomical adaptations mostly to increase photosynthetic capability and water storage. Our goal was to describe the shoot development in two succulent species of Euphorbia using light microscopy coupled with high-resolution X-ray-computed tomography. Collateral cortical bundles were observed associated with the stem ribs in both species. The analysis of vasculature demonstrated that these bundles are, in fact, leaf traces that run axially along a portion of the internode. That structural pattern is due to an ontogenetic alteration. During shoot development, the leaf-bases remain adnate to the stem near the SAM, forming an axial component. When the internode elongates, the leaf bundles stretch as cortical bundles. The meristematic activity associated with the bundles forms the stem ribs, as leaf veins near the node, and induce rib formation along the entire internode even in the portion where the leaf traces join the stele. In addition, heterochronic shifts are also involved in the evolution of the shoot system in these Euphorbia, being related to early deciduous reduced leaves and the transference of the main photosynthetic function to the stem. This study demonstrates for the first time the influence of leaf developmental shifts and stem rib formation in Euphorbia and sheds new light on the evolution of stem succulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...