Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 33(6): 650-666, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28476202

RESUMO

OBJECTIVE: The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. METHODS: Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. RESULTS: Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. SIGNIFICANCE: A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing "functional regeneration and adaptation" strategies with an emphasis on restoring physiologic joint function.


Assuntos
Cemento Dentário , Ligamento Periodontal , Osso e Ossos , Dureza , Dente
2.
Bone ; 57(2): 455-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24063947

RESUMO

This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano-transmission X-ray microscopy (nano-TXM), and microtomography (MicroXCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (µ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8GPa) compared to lamellar bone (0.8-6GPa), and increased quantities of Ca, P and Zn as revealed by µ-XRF. Interestingly, the hygroscopic 10-30µm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted.


Assuntos
Osso e Ossos/fisiologia , Articulações/fisiologia , Ligamento Periodontal/fisiologia , Dente/fisiologia , Biglicano/metabolismo , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/ultraestrutura , Cálcio/metabolismo , Cemento Dentário/diagnóstico por imagem , Cemento Dentário/fisiologia , Módulo de Elasticidade , Proteínas da Matriz Extracelular/metabolismo , Fibromodulina , Fluorescência , Humanos , Imuno-Histoquímica , Articulações/ultraestrutura , Microscopia de Força Atômica , Modelos Biológicos , Ligamento Periodontal/citologia , Ligamento Periodontal/diagnóstico por imagem , Ligamento Periodontal/ultraestrutura , Fósforo/metabolismo , Proteoglicanas/metabolismo , Propriedades de Superfície , Dente/diagnóstico por imagem , Dente/ultraestrutura , Microtomografia por Raio-X , Zinco/metabolismo
3.
PLoS One ; 7(4): e35980, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558292

RESUMO

Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7 ± 0.1 to 0.9 ± 0.2 GPa) and cementum (0.6 ± 0.1 to 0.8 ± 0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months), followed by a senescent phase (10 to 15 months), from which deviations due to experimentally induced perturbations can be effectively investigated.


Assuntos
Adaptação Fisiológica , Envelhecimento/fisiologia , Osso e Ossos/fisiologia , Modelos Animais , Modelos Biológicos , Ligamento Periodontal/fisiologia , Dente/fisiologia , Fosfatase Ácida , Azul Alciano/metabolismo , Animais , Osso e Ossos/enzimologia , Cemento Dentário/enzimologia , Oclusão Dentária , Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Dureza , Imuno-Histoquímica , Isoenzimas , Dente Molar/ultraestrutura , Peso Molecular , Osteoclastos/citologia , Ratos , Espectrometria por Raios X , Coloração e Rotulagem , Fosfatase Ácida Resistente a Tartarato , Dente/anatomia & histologia , Dente/citologia , Raiz Dentária/anatomia & histologia , Raiz Dentária/fisiologia
4.
Biomaterials ; 32(29): 7106-17, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21774982

RESUMO

A naturally graded interface due to functional demands can deviate toward a discontinuous interface, eventually decreasing the functional efficiency of a dynamic joint. It is this characteristic feature in a human bone-tooth fibrous joint bone-PDL-tooth complex that will be discussed through histochemistry, and site-specific high resolution microscopy, micro tomography(Micro XCT™), X-ray fluorescence imaging and wet nanoindentation techniques. Results demonstrated two causes for the occurrence of 5-50 µm narrowed PDL-space: 1) microscopic scalloped regions at the PDL-insertion sites and macro-scale stratified layers of bone with rich basophilic lines, and 2) macroscopic bony protrusions. Narrowed PDL-complexes illustrated patchy appearance of asporin, and when imaged under wet conditions using an atomic force microscope (AFM), demonstrated structural reorganization of the PDL, collagen periodicity, organic-dominant areas at the PDL-cementum and PDL-bone entheses and within cementum and bone. Scanning electron microscopy (SEM) results confirmed AFM results. Despite the narrowed PDL, continuity between PDL and vasculature in endosteal spaces of bone was demonstrated using a Micro XCT™. The higher levels of Ca and P X-ray fluorescence using a microprobe were correlated with higher elastic modulus values of 0.1-1.4 and 0.1-1.2 GPa for PDL-bone and PDL-cementum using wet nanoindentation. The ranges in elastic modulus values for PDL-bone and PDL-cementum entheses in 150-380 µm wide PDL-complex were 0.1-1.0 and 0.1-0.6 GPa. Based on these results we propose that strain amplification at the entheses could be minimized with a gradual change in modulus profile, a characteristic of 150-380 µm wide functional PDL-space. However, a discontinuity in modulus profile, a characteristic of 5-50 µm wide narrowed PDL-space would cause compromised mechanotransduction. The constrictions or narrowed sites within the bone-tooth fibrous joint will become the new "load bearing sites" that eventually could cause direct local fusion of bone with cementum.


Assuntos
Osso e Ossos/ultraestrutura , Cemento Dentário/ultraestrutura , Dente/ultraestrutura , Osso e Ossos/química , Cemento Dentário/química , Módulo de Elasticidade , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Tomografia Computadorizada por Raios X , Dente/química
5.
Am J Physiol Cell Physiol ; 301(2): C451-60, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21525434

RESUMO

Continuous exposure of polymorphonuclear leukocytes (PMNLs) to circulatory hemodynamics points to fluid flow as a biophysical regulator of their activity. Specifically, fluid flow-derived shear stresses deactivate leukocytes via actions on the conformational activities of proteins on the cell surface. Because membrane properties affect activities of membrane-bound proteins, we hypothesized that changes in the physical properties of cell membranes influence PMNL sensitivity to fluid shear stress. For this purpose, we modified PMNL membranes and showed that the cellular mechanosensitivity to shear was impaired whether we increased, reduced, or disrupted the organization of cholesterol within the lipid bilayer. Notably, PMNLs with enriched membrane cholesterol exhibited attenuated pseudopod retraction responses to shear that were recovered by select concentrations of benzyl alcohol (a membrane fluidizer). In fact, PMNL responses to shear positively correlated (R(2) = 0.96; P < 0.0001) with cholesterol-related membrane fluidity. Moreover, in low-density lipoprotein receptor-deficient (LDLr(-/-)) mice fed a high-fat diet (a hypercholesterolemia model), PMNL shear-responses correlated (R(2) = 0.5; P < 0.01) with blood concentrations of unesterified (i.e., free) cholesterol. In this regard, the shear-responses of PMNLs gradually diminished and eventually reversed as free cholesterol levels in blood increased during 8 wk of the high-fat diet. Collectively, our results provided evidence that cholesterol is an important component of the PMNL mechanotransducing capacity and elevated membrane cholesterol impairs PMNL shear-responses at least partially through its impact on membrane fluidity. This cholesterol-linked perturbation may contribute to dysregulated PMNL activity (e.g., chronic inflammation) related to hypercholesterolemia and causal for cardiovascular pathologies (e.g., atherosclerosis).


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Mecanotransdução Celular , Fluidez de Membrana , Neutrófilos/metabolismo , Animais , Álcool Benzílico/farmacologia , Adesão Celular , Membrana Celular/efeitos dos fármacos , Movimento Celular , Colesterol/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Filipina/farmacologia , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Pseudópodes/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Estresse Mecânico , Fatores de Tempo , Regulação para Cima , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...