Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(6): 152, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735012

RESUMO

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Assuntos
Acetatos , Artemisia annua , Artemisininas , Ciclopentanos , Metiltransferases , Oxilipinas , Filogenia , Artemisia annua/genética , Artemisia annua/enzimologia , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Artemisininas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Acetatos/farmacologia , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo
2.
Physiol Plant ; 175(1): e13849, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36636815

RESUMO

The wonder drug artemisinin, a sesquiterpene lactone endoperoxide from Artemisia annua is the million-dollar molecule required to curb the deadliest disease, Malaria. One of the major challenges even today is to increase the concentration of artemisinin within plants. The transcription factors are important regulators of plant secondary metabolites and have the potential to regulate key steps or the whole biosynthetic pathway. In this study, we have identified and characterised two bHLH transcription factors (Aa6119 and Aa7162) from A. annua. Both the transcription factors turned out to be transcriptionally active and nuclear-localised typical bHLH proteins. In our study, we found that Aa6119 specifically binds to the E-box element present on the promoter of artemisinin biosynthetic gene, AMORPHA-4,11-DIENE SYNTHASE (ADS). The protein-DNA interaction confirmed by Yeast one-hybrid assay was specific as Aa6119 was unable to bind to the mutated E-boxes of ADS. Further, Aa6119 interacted physically with Aa7162, which was confirmed in vitro by Yeast two-hybrid assay and in vivo by Bimolecular Fluorescent complementation assay. Our quantitative expression studies have confirmed that Aa6119 and Aa7162 act synergistically in the regulation of artemisinin biosynthetic and trichome developmental genes. The higher accumulation of artemisinin content in the transient co-transformed transgenic plants than in the individual over-expression transgenic plants has further validated that Aa6119 and Aa7162 act positively and synergistically to regulate artemisinin accumulation.


Assuntos
Artemisia annua , Artemisininas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Artemisia annua/genética , Artemisia annua/metabolismo , Vias Biossintéticas/genética , Artemisininas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...