Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 79(10): 10F305, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044618

RESUMO

The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facility's flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated.

2.
Rev Sci Instrum ; 79(10): 10F547, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044689

RESUMO

Here we present the first direct focal spot images and analysis of an ultrahigh intensity short-pulse laser focus (>5x10(19) W/cm(2)) on target. Such a focal spot characterization is typically done previous to the shot with a low-power alignment beam using equivalent plane imaging techniques. The resulting intensity of the shot is then inferred from these results. We report on the development of a backscatter focus diagnostic, which enables imaging of the on-target full-power focal spot.

3.
Rev Sci Instrum ; 78(8): 083501, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17764320

RESUMO

A multiframe, high-time resolution pump-probe diagnostic consisting of a consecutive train of ultrashort laser pulses (approximately ps) has been developed for use with a chirped pulse amplification (CPA) system. A system of high quality windows is used to create a series of 1054 nm picosecond-laser pulses which are injected into the CPA system before the pulse stretcher and amplifiers. By adding or removing windows in the pulse train forming optics, the number of pulses can be varied. By varying the distance and thickness of the respective optical elements, the time in between the pulses, i.e., the time in between frames, can be set. In our example application, the CPA pulse train is converted to 527 nm using a KDP crystal and focused into a preformed plasma and the reflected laser light due to stimulated Raman scattering is measured. Each pulse samples different plasma conditions as the plasma evolves in time, producing more data on each laser shot than with a single short pulse probe. This novel technique could potentially be implemented to obtain multiple high-time resolution measurements of the dynamics of physical processes over hundreds of picoseconds or even nanoseconds with picosecond resolution on a single shot.


Assuntos
Amplificadores Eletrônicos , Gases/química , Calefação/instrumentação , Lasers , Oscilometria/instrumentação , Reologia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Injeção de Fluxo/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...