Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 636, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311857

RESUMO

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Assuntos
Encéfalo , Fósseis , Filogenia , Arqueologia , Artefatos
3.
Proc Natl Acad Sci U S A ; 115(22): 5738-5743, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760068

RESUMO

Hominin cranial remains from the Dinaledi Chamber, South Africa, represent multiple individuals of the species Homo naledi This species exhibits a small endocranial volume comparable to Australopithecus, combined with several aspects of external cranial anatomy similar to larger-brained species of Homo such as Homo habilis and Homo erectus Here, we describe the endocast anatomy of this recently discovered species. Despite the small size of the H. naledi endocasts, they share several aspects of structure in common with other species of Homo, not found in other hominins or great apes, notably in the organization of the inferior frontal and lateral orbital gyri. The presence of such structural innovations in a small-brained hominin may have relevance to behavioral evolution within the genus Homo.


Assuntos
Encéfalo/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Hominidae , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...