Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747099

RESUMO

Break-junction techniques provide the possibility to study electric and thermoelectric properties of single-molecule junctions in great detail. These techniques rely on the same principle of controllably breaking metallic contacts in order to create single-molecule junctions, whilst keeping track of the junction's conductance. Here, we compare results from mechanically controllable break junction (MCBJ) and scanning tunneling microscope (STM) methods, while characterizing conductance properties of the same novel mechanosensitive para- and meta-connected naphtalenophane compounds. In addition, thermopower measurements are carried out for both compounds using the STM break junction (STM-BJ) technique. For the conductance experiments, the same data processing using a clustering analysis is performed. We obtain to a large extent similar results for both methods, although values of conductance and stretching lengths for the STM-BJ technique are slightly larger in comparison with the MCBJ. STM-BJ thermopower experiments show similar Seebeck coefficients for both compounds. An increase in the Seebeck coefficient is revealed, whilst the conductance decreases, after which it saturates at around 10 µV K-1. This phenomenon is studied theoretically using a tight binding model. It shows that changes of molecule-electrode electronic couplings combined with shifts of the resonance energies explain the correlated behavior of conductance and Seebeck coefficient.

2.
J Phys Chem C Nanomater Interfaces ; 127(28): 13751-13758, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37528901

RESUMO

We report a combined experimental and theoretical study of a series of thiomethyl (SMe) anchored cross-conjugated molecules featuring an acyclic central bridging ketone and their analogous skipped-conjugated alcohol derivatives. Studies of these molecules in a gold|single-molecule|gold junction using scanning tunneling microscopy-break junction techniques reveal a similar conductance (G) value for both the cross-conjugated molecules and their skipped-conjugated partners. Theoretical studies based on density functional theory of the molecules in their optimum geometries in the junction reveal the reason for this similarity in conductance, as the predicted conductance for the alcohol series of compounds varies more with the tilt angle. Thermopower measurements reveal a higher Seebeck coefficient (S) for the cross-conjugated ketone molecules relative to the alcohol derivatives, with a particularly high S for the biphenyl derivative 3a (-15.6 µV/K), an increase of threefold compared to its alcohol analog. The predicted behavior of the quantum interference (QI) in this series of cross-conjugated molecules is found to be constructive, though the appearance of a destructive QI feature for 3a is due to the degeneracy of the HOMO orbital and may explain the enhancement of the value of S for this molecule.

3.
J Am Chem Soc ; 144(28): 12698-12714, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35767015

RESUMO

This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.

4.
Nano Lett ; 22(3): 948-953, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35073099

RESUMO

Organic thermoelectric materials have potential for wearable heating, cooling, and energy generation devices at room temperature. For this to be technologically viable, high-conductance (G) and high-Seebeck-coefficient (S) materials are needed. For most semiconductors, the increase in S is accompanied by a decrease in G. Here, using a combined experimental and theoretical investigation, we demonstrate that a simultaneous enhancement of S and G can be achieved in single organic radical molecules, thanks to their intrinsic spin state. A counterintuitive quantum interference (QI) effect is also observed in stable Blatter radical molecules, where constructive QI occurs for a meta-connected radical, leading to further enhancement of thermoelectric properties. Compared to an analogous closed-shell molecule, the power factor is enhanced by more than 1 order of magnitude in radicals. These results open a new avenue for the development of organic thermoelectric materials operating at room temperature.

5.
J Am Chem Soc ; 143(10): 3817-3829, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33606524

RESUMO

The most probable single-molecule conductance of each member of a series of 12 conjugated molecular wires, 6 of which contain either a ruthenium or platinum center centrally placed within the backbone, has been determined. The measurement of a small, positive Seebeck coefficient has established that transmission through these molecules takes place by tunneling through the tail of the HOMO resonance near the middle of the HOMO-LUMO gap in each case. Despite the general similarities in the molecular lengths and frontier-orbital compositions, experimental and computationally determined trends in molecular conductance values across this series cannot be satisfactorily explained in terms of commonly discussed "single-parameter" models of junction conductance. Rather, the trends in molecular conductance are better rationalized from consideration of the complete molecular junction, with conductance values well described by transport calculations carried out at the DFT level of theory, on the basis of the Landauer-Büttiker model.

6.
Nanoscale Horiz ; 6(1): 49-58, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33107543

RESUMO

The ability to control the charge state of individual molecules wired in two-terminal single-molecule junctions is a key challenge in molecular electronics, particularly in relation to the development of molecular memory and other computational componentry. Here we demonstrate that single porphyrin molecular junctions can be reversibly charged and discharged at elevated biases under ambient conditions due to the presence of a localised molecular eigenstate close to the Fermi edge of the electrodes. In particular, we can observe long-lived charge-states with lifetimes upwards of 1-10 seconds after returning to low bias and large changes in conductance, in excess of 100-fold at low bias. Our theoretical analysis finds charge-state lifetimes within the same time range as the experiments. The ambient operation demonstrates that special conditions such as low temperatures or ultra-high vacuum are not essential to observe hysteresis and stable charged molecular junctions.

7.
Nanoscale ; 12(27): 14682-14688, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618309

RESUMO

We report measurements on gold|single-molecule|gold junctions, using a modified scanning tunneling microscope-break junction (STM-BJ) technique, of the Seebeck coefficient and electrical conductance of a series of bridged biphenyl molecules, with meta connectivities to pyridyl anchor groups. These data are compared with a previously reported study of para-connected analogues. In agreement with a tight binding model, the electrical conductance of the meta series is relatively low and is sensitive to the nature of the bridging groups, whereas in the para case the conductance is higher and relatively insensitive to the presence of the bridging groups. This difference in sensitivity arises from the presence of destructive quantum interference in the π system of the unbridged aromatic core, which is alleviated to different degrees by the presence of bridging groups. More precisely, the Seebeck coefficient of meta-connected molecules was found to vary between -6.1 µV K-1 and -14.1 µV K-1, whereas that of the para-connected molecules varied from -5.5 µV K-1 and -9.0 µV K-1.

8.
Biomolecules ; 9(10)2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591358

RESUMO

We studied the electron-transport properties of ten different amino acids and one dimer (di-methionine) using the mechanically controlled break-junction (MCBJ) technique. For methionine and cysteine, additional measurements were performed with the scanning tunneling microscope break-junction (STM-BJ) technique. By means of a statistical clustering technique, we identified several conductance groups for each of the molecules considered. Ab initio calculations revealed that the observed broad conductance distribution stems from the possibility of various binding geometries which can be formed during stretching combined with a multitude of possible conformational changes. The results suggest that it would be helpful to explore different experimental techniques such as recognition tunneling and conditions to help identify the nature of amino-acid-based junctions even further, for example, with the goal to establish a firm platform for their unambiguous recognition by tunneling break-junction experiments.


Assuntos
Aminoácidos/química , Técnicas Eletroquímicas/métodos , Análise por Conglomerados , Transporte de Elétrons , Microscopia de Tunelamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...