Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 14(23): 2684-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25515750

RESUMO

Choline kinase (CK) is a homodimeric enzyme that catalyses the transfer of the ATP γ-phosphate to choline, generating phosphocholine and ADP in the presence of magnesium. Several isoforms of CK are present in humans but only the HsCKα has been associated with cancer and validated as a drug target to treat this disease. As a consequence a large number of compounds based on Hemicholinium (HC-3) have been described. Two compounds, previously reported to inhibit the human enzyme, have recently been shown to inhibit P. falciparum CK (PfCK) and therefore their potential applications might be anticipated to other pathogens. Herein, using molecular dynamic simulations, we have firstly observed that the ATP and the choline binding site of different CK in pathogens and human are conserved, suggesting that previous compounds inhibiting the human enzyme may also interact with CKs from different pathogens. We have substantiated such observation with experimental assays showing that HsCKα1, PfCK and CpCK bind to two compounds with distinct structural features in the low µM range. Collectively, these results uncover similarities among the choline kinase binding site from different pathogenic species and the human enzyme, highlighting the feasibility of designing novel inhibitors based on the choline binding pocket.


Assuntos
Antiprotozoários/química , Colina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/química , Hemicolínio 3/análogos & derivados , Proteínas de Protozoários/antagonistas & inibidores , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Domínio Catalítico , Colina/química , Colina Quinase/química , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/enzimologia , Cryptosporidium parvum/crescimento & desenvolvimento , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Hemicolínio 3/síntese química , Hemicolínio 3/farmacologia , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/enzimologia , Plasmodium knowlesi/crescimento & desenvolvimento , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
2.
Protein Eng Des Sel ; 17(2): 141-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15047910

RESUMO

Galactose oxidase (GO; E.C. 1.1.3.9) is a copper- containing enzyme that oxidizes a range of primary alcohols to aldehydes. This broad substrate specificity is reflected in a high K(M) for substrates. Directed evolution has previously been used to select variants of GO that exhibit enhanced expression and kinetic properties. In assays using unpurified enzyme samples, the variant C383S displayed a 5-fold lower K(M) than wild-type GO. In the present study, we have constructed, expressed, purified and characterized a number of single, double and triple mutants at residues Cys383, Tyr436 and Val494, identified in one of the directed evolution studies, to examine their relative contributions to improved catalytic activity of GO. We report kinetic studies on the various mutant enzymes. In addition, we have determined the three-dimensional structure of the C383S variant. As with many mutations identified in directed evolution experiments, the availability of structural information does not provide a definitive answer to the reason for the improved K(M) in the C383S variant protein.


Assuntos
Evolução Molecular Direcionada/métodos , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Mutação , Sítios de Ligação , Cristalografia por Raios X , Cisteína , Galactose Oxidase/genética , Cinética , Modelos Moleculares , Pichia/genética , Conformação Proteica , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Transformação Genética
3.
Biochem Soc Trans ; 31(Pt 3): 506-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773145

RESUMO

Galactose oxidase (GO; EC 1.1.3.9) is a monomeric 68 kDa enzyme that contains a single copper and an amino acid-derived cofactor. The mechanism of this radical enzyme has been widely studied by structural, spectroscopic, kinetic and mutational approaches and there is a reasonable understanding of the catalytic mechanism and activation by oxidation to generate the radical cofactor that resides on Tyr-272, one of the copper ligands. Biogenesis of this cofactor involves the post-translational, autocatalytic formation of a thioether cross-link between the active-site residues Cys-228 and Tyr-272. This process is closely linked to a peptide bond cleavage event that releases the N-terminal 17-amino-acid pro-peptide. We have shown using pro-enzyme purified in copper-free conditions that mature oxidized GO can be formed by an autocatalytic process upon addition of copper and oxygen. Structural comparison of pro-GO (GO with the prosequence present) with mature GO reveals overall structural similarity, but with some regions showing significant local differences in main chain position and some active-site-residue side chains differing significantly from their mature enzyme positions. These structural effects of the pro-peptide suggest that it may act as an intramolecular chaperone to provide an open active-site structure conducive to copper binding and chemistry associated with cofactor formation. Various models can be proposed to account for the formation of the thioether bond and oxidation to the radical state; however, the mechanism of prosequence cleavage remains unclear.


Assuntos
Galactose Oxidase/metabolismo , Sítios de Ligação , Coenzimas/metabolismo , Cobre/análise , Precursores Enzimáticos/metabolismo , Fusarium/enzimologia , Galactose Oxidase/química , Galactose Oxidase/genética , Oxirredução , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA