Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 33342-33348, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744848

RESUMO

In this study, we present an alternative method for synthesizing carbon quantum dots (CQDs) using a green synthesis approach via extracts from Agave maximiliana and Opuntia ficus-indica(Ofi). The extracts from both plants were used as the carbon source for the CQDs. The synthesis method employs mesoporous zeolite 4A as a refractory for the thermal treatment of the samples. Transmission electron microscopy analysis established that the size of the CQDs shows a narrow distribution centered around 2 nm with a maximum size of less than 3 nm for both cases. The CQDs exhibit absorption bands associated with π-π* transitions located around 220 nm. In both cases, photoluminescence (PL) phenomenon was detected by irradiating the samples with a UV wavelength and detecting emissions close to the blue wavelength. Additionally, both kinds of CQDs were tested as surface-enhanced Raman scattering (SERS) substrates against methylene blue (MB), indicating an enhancement associated with ring deformation and stretching modes of the v(C-C) and v(C-N) bonds located around 1400 and 1620 cm-1, respectively. Complementarily, in the framework of density functional theory, H2nC2(2m+1) structures (with n = 3-5 and m = 1-3) were used as a theoretical representation of CQDs in interaction with the MB molecule. It is used for developing the analysis of charge transfer effects between both systems and for specifying elements that generate the SERS effect associated with the chemical enhancement mechanism.

2.
J Mech Behav Biomed Mater ; 147: 106131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774441

RESUMO

This article focuses on a description of research performed to identify structural and mechanical properties differences between calculi in stones, such as gallstones, kidney stones, dental tartar, and saliva gland sialolite, were analyzed and compared with tap water stone, in order to set interrelations. In this study, biological hard pebble-like structures were analyzed and compared among them using Scanning Electron Microscopy (SEM), X-Ray diffraction (XRD), and Atomic Force Microscopy (AFM). In addition, Nanoindentation was used to obtain values as example in kidney stones the in; stiffness S = 27,827 ± 620 N/nm elastic modulus E = 27.3 ± 4.5 GPa, hardness H = 1.5 ± 0.5 GPa. Samples with the highest amounts of calcium and magnesium oxides were; Tap water stone (39.60%), followed by dental tartar (39.40%), saliva gland sialolite (29.20%), kidney stones (27.70%), and lastly the gallstones (0.30%). Kidney stones showed in particular, whewellite and kaoulinite crystallographic phases, that confers characteristics of greater crystallization with respect to the other stones. Kidney stones positioned in the major hardness stone in human body with 1.5 GPa. In general, samples with the highest amount of calcium oxides, also showed the highest mechanical properties of H and E. Microstructural characteristics and nano-hardness of tap water stone from drinking water where similar to those of dental tartar and saliva gland sialolite, more research still required to associate health concerns and tap water scale derived from drinking water known as hardwater.

3.
4.
ACS Omega ; 8(33): 30563-30568, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636981

RESUMO

In this work, we report the structural analysis of Cu+ and Cu2+ ions in zeolite as a nanoreactor with antibacterial applications. A simple one-step process was implemented to obtain Cu ions in zeolite A (ZA4) by controlling the temperature in the solutions to guarantee the ions' stability. Samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, showing the characteristic zeolite elements as well as the characteristic bands with slight modifications in the chemical environment of the zeolite nanoreactor attributed to Cu ions by FT-IR spectroscopy. In addition, a shift of the characteristic peaks of ZA4 in X-ray diffraction was observed as well as a decrease in relative peak intensity. On the other hand, the antibacterial activity of Cu ions in the zeolite nanoreactor was evaluated.

5.
J Phys Condens Matter ; 35(35)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253372

RESUMO

Barium titanate (BaTiO3) single crystal with a tetragonal phase was characterized by nanoindentation. Elastic and elastic-plastic deformation regimes were obtained. The main objective was the evaluation of the anisotropic behavior related to mechanical properties associated with the cross-section of the ferroelectrica- andc-domains (In-plane and out-of-plane) in (001) configuration domains. This behavior was evaluated along a line perpendicular to the between domains, which demonstrated that the mechanical properties of the BaTiO3single crystal depend on the distance from due to the effect of the influence of the neighbor domain. A three-dimensional (3D) finite element (FE) model was developed to simulate mechanical effects revealed by the nanoindentations test. The FE simulation demonstrated that there is no simple isotropic mechanical behavior associated with the domain type. Numerical simulations and experiments performed to study ferroelastic switching domains in BaTiO3crystals revealed the interaction of the 90°-cadomain with the indentation position.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...