Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(4): e0152883, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27093157

RESUMO

Predictions from forest ecosystem models are limited in part by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect. Likewise, future disturbances also present a challenge to prediction as their dynamics are episodic and complex and occur across a range of spatial and temporal scales. While large extreme events such as tropical cyclones, fires, or pest outbreaks can produce dramatic consequences, small fine-scale disturbance events are typically much more common and may be as or even more important. This study focuses on the impacts of these smaller disturbance events on the predictability of vegetation dynamics and carbon flux. Using data on vegetation structure collected for the same domain at two different times, i.e. "repeat lidar data", we test high-resolution model predictions of vegetation dynamics and carbon flux across a range of spatial scales at an important tropical forest site at La Selva Biological Station, Costa Rica. We found that predicted height change from a height-structured ecosystem model compared well to lidar measured height change at the domain scale (~150 ha), but that the model-data mismatch increased exponentially as the spatial scale of evaluation decreased below 20 ha. We demonstrate that such scale-dependent errors can be attributed to errors predicting the pattern of fine-scale forest disturbances. The results of this study illustrate the strong impact fine-scale forest disturbances have on forest dynamics, ultimately limiting the spatial resolution of accurate model predictions.


Assuntos
Ciclo do Carbono/fisiologia , Árvores/fisiologia , Costa Rica , Ecossistema , Florestas , Modelos Teóricos
2.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120163, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23610169

RESUMO

Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios/estatística & dados numéricos , Árvores , Brasil , Carbono/análise , Clima , Atividades Humanas , Humanos , Fatores de Risco , Estações do Ano , Análise Espacial
4.
Proc Natl Acad Sci U S A ; 99(3): 1389-94, 2002 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11830663

RESUMO

Atmospheric and ground-based methods agree on the presence of a carbon sink in the coterminous United States (the United States minus Alaska and Hawaii), and the primary causes for the sink recently have been identified. Projecting the future behavior of the sink is necessary for projecting future net emissions. Here we use two models, the Ecosystem Demography model and a second simpler empirically based model (Miami Land Use History), to estimate the spatio-temporal patterns of ecosystem carbon stocks and fluxes resulting from land-use changes and fire suppression from 1700 to 2100. Our results are compared with other historical reconstructions of ecosystem carbon fluxes and to a detailed carbon budget for the 1980s. Our projections indicate that the ecosystem recovery processes that are primarily responsible for the contemporary U.S. carbon sink will slow over the next century, resulting in a significant reduction of the sink. The projected rate of decrease depends strongly on scenarios of future land use and the long-term effectiveness of fire suppression.


Assuntos
Agricultura/tendências , Carbono , Ecossistema , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Incêndios/prevenção & controle , Fatores de Tempo , Estados Unidos
5.
Science ; 292(5525): 2316-20, 2001 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-11423659

RESUMO

For the period 1980-89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 10(15) grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980-89 are similar to those for 1985-89 and 1990-94, indicating a relatively stable U.S. sink throughout the period.


Assuntos
Atmosfera , Carbono , Árvores , Agricultura , Carbono/metabolismo , Dióxido de Carbono , Conservação dos Recursos Naturais , Ecossistema , Incêndios , Agricultura Florestal , Solo , Fatores de Tempo , Árvores/metabolismo , Estados Unidos , Madeira
6.
Science ; 290(5494): 1148-51, 2000 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-11073451

RESUMO

Carbon accumulation in forests has been attributed to historical changes in land use and the enhancement of tree growth by CO2 fertilization, N deposition, and climate change. The relative contribution of land use and growth enhancement is estimated by using inventory data from five states spanning a latitudinal gradient in the eastern United States. Land use is the dominant factor governing the rate of carbon accumulation in these states, with growth enhancement contributing far less than previously reported. The estimated fraction of aboveground net ecosystem production due to growth enhancement is 2.0 +/- 4.4%, with the remainder due to land use.


Assuntos
Biomassa , Carbono , Ecossistema , Árvores , Agricultura , Carbono/metabolismo , Dióxido de Carbono , Agricultura Florestal , Funções Verossimilhança , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...