Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 10: 1285, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244838

RESUMO

Background: IL-1ß is a highly potent pro-inflammatory cytokine and its secretion is tightly regulated. Inactive pro-IL-1ß is transcribed in response to innate immune receptors activating NFκB. If tissue damage occurs, danger signals released from necrotic cells, such as ATP, can activate NLRP3-inflammasomes (multiprotein complexes consisting of NLRP3, ASC, and active caspase-1) which cleaves and activates pro-IL-1ß. NLRP3 activation also depends on NEK7 and mitochondrial ROS-production. Thus, IL-1ß secretion may be regulated at the level of each involved component. We have previously shown that NLRP3-dependent IL-1ß release can be induced in cardiac fibroblasts by pro-inflammatory stimuli. However, anti-inflammatory mechanisms targeting IL-1ß release in cardiac cells have not been investigated. mTOR is a key regulator of protein metabolism, including autophagy and proteasome activity. In this study we explored whether autophagy or proteasomal degradation are regulators of NLRP3 inflammasome activation and IL-1ß release from cardiac fibroblasts. Methods and Results: Serum starvation selectively reduced LPS/ATP-induced IL-1ß secretion from cardiac fibroblasts. However, no other inflammasome components, nor mitochondrial mass, were affected. The mTOR inhibitor rapamycin restored pro-IL-1ß protein levels as well as LPS/ATP-induced IL-1ß release from serum starved cells. However, neither serum starvation nor rapamycin induced autophagy in cardiac fibroblasts. Conversely, chloroquine and bafilomycin A (inhibitors of autophagy) and betulinic acid (a proteasome activator) effectively reduced LPS-induced pro-IL-1ß protein levels. Key findings were reinvestigated in human monocyte-derived macrophages. Conclusion: In cardiac fibroblasts, mTOR inhibition selectively favors pro-IL-1ß synthesis while proteasomal degradation and not autophagy is the major catabolic anti-inflammatory mechanism for degradation of this cytokine.


Assuntos
Fibroblastos/metabolismo , Expressão Gênica , Inflamassomos/metabolismo , Interleucina-1beta/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Biomarcadores , Linhagem Celular , Células Cultivadas , Cloroquina , Citocinas , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA