Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(1): 94-105, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37427803

RESUMO

The water caltrop (Trapa natans) develops unique woody fruits with unusually large seeds among aquatic plants. During fruit development, the inner fruit wall (endocarp) sclerifies and forms a protective layer for the seed. Endocarp sclerification also occurs in many land plants with large seeds; however, in T. natans, the processes of fruit formation, endocarp hardening, and seed storage take place entirely underwater. To identify potential chemical and structural adaptations for the aquatic environment, we investigated the cell-wall composition in the endocarp at a young developmental stage, as well as at fruit maturity. Our work shows that hydrolyzable tannins-specifically gallotannins-flood the endocarp tissue during secondary wall formation and are integrated into cell walls along with lignin during maturation. Within the secondary walls of mature tissue, we identified unusually strong spectroscopic features of ester linkages, suggesting that the gallotannins and their derivatives are cross-linked to other wall components via ester bonds, leading to unique cell-wall properties. The synthesis of large amounts of water-soluble, defensive aromatic metabolites during secondary wall formation might be a fast way to defend seeds within the insufficiently lignified endocarp of T. natans.


Assuntos
Taninos Hidrolisáveis , Lythraceae , Sementes , Frutas , Ésteres
2.
Planta ; 256(3): 49, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881249

RESUMO

MAIN CONCLUSION: High symplastic connectivity via pits was linked to the lignification of the developing walnut shell. With maturation, this network lessened, whereas apoplastic intercellular space remained and became relevant for shell drying. The shell of the walnut (Juglans regia) sclerifies within several weeks. This fast secondary cell wall thickening and lignification of the shell tissue might need metabolites from the supporting husk tissue. To reveal the transport capacity of the walnut shell tissue and its connection to the husk, we visualised the symplastic and apoplastic transport routes during shell development by serial block face-SEM and 3D reconstruction. We found an extensive network of pit channels connecting the cells within the shell tissue, but even more towards the husk tissue. Each pit channel ended in a pit field, which was occupied by multiple plasmodesmata passing through the middle lamella. During shell development, secondary cell wall formation progressed towards the interior of the cell, leaving active pit channels open. In contrast, pit channels, which had no plasmodesmata connection to a neighbouring cell, got filled by cellulose layers from the inner cell wall lamellae. A comparison with other nut species showed that an extended network during sclerification seemed to be linked to high cell wall lignification and that the connectivity between cells got reduced with maturation. In contrast, intercellular spaces between cells remained unchanged during the entire sclerification process, allowing air and water to flow through the walnut shell tissue when mature. The connectivity between inner tissue and environment was essential during shell drying in the last month of nut development to avoid mould formation. The findings highlight how connectivity and transport work in developing walnut shell tissue and how finally in the mature state these structures influence shell mechanics, permeability, conservation and germination.


Assuntos
Juglans , Parede Celular/metabolismo , Celulose/metabolismo , Plasmodesmos/metabolismo
4.
R Soc Open Sci ; 8(8): 210399, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430046

RESUMO

Nutshells achieve remarkable properties by optimizing structure and chemistry at different hierarchical levels. Probing nutshells from the cellular down to the nano- and molecular level by microchemical and nanomechanical imaging techniques reveals insights into nature's packing concepts. In walnut and pistachio shells, carbohydrate and lignin polymers assemble to form thick-walled puzzle cells, which interlock three-dimensionally and show high tissue strength. Pistachio additionally achieves high-energy absorption by numerous lobes interconnected via ball-joint-like structures. By contrast, the three times more lignified walnut shells show brittle LEGO-brick failure, often along the numerous pit channels. In both species, cell walls (CWs) show distinct lamellar structures. These lamellae involve a helicoidal arrangement of cellulose macrofibrils as a recurring motif. Between the two nutshell species, these lamellae show differences in thickness and pitch angle, which can explain the different mechanical properties on the nanolevel. Our in-depth study of the two nutshell tissues highlights the role of cell form and their interlocking as well as plant CW composition and structure for mechanical protection. Understanding these plant shell concepts might inspire biomimetic material developments as well as using walnut and pistachio shell waste as sustainable raw material in future applications.

5.
J Exp Bot ; 72(13): 4744-4756, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33963747

RESUMO

Walnut (Juglans regia) kernels are protected by a tough shell consisting of polylobate sclereids that interlock into a 3D puzzle. The shape transformations from isodiametric to lobed cells is well documented for 2D pavement cells, but not for 3D puzzle sclereids. Here, we study the morphogenesis of these cells by using a combination of different imaging techniques. Serial face-microtomy enabled us to reconstruct tissue growth of whole walnut fruits in 3D, and serial block face-scanning electron microscopy exposed cell shapes and their transformation in 3D during shell tissue development. In combination with Raman and fluorescence microscopy, we revealed multiple loops of cellulosic thickenings in cell walls, acting as stiff restrictions during cell growth and leading to the lobed cell shape. Our findings contribute to a better understanding of the 3D shape transformation of polylobate sclereids and the role of pectin and cellulose within this process.


Assuntos
Juglans , Parede Celular , Microscopia Eletrônica de Varredura , Morfogênese , Pectinas
6.
New Phytol ; 230(6): 2154-2163, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629369

RESUMO

The encapsulation of seeds in hard coats and fruit walls (pericarp layers) fulfils protective and dispersal functions in many plant families. In angiosperms, packaging structures possess a remarkable range of different morphologies and functionalities, as illustrated by thermo and hygro-responsive seed pods and appendages, as well as mechanically strong and water-impermeable shells. Key to these different functionalities are characteristic structural arrangements and chemical modifications of the underlying sclerenchymatous tissues. Although many ecological aspects of hard seed encapsulation have been well documented, a detailed understanding of the relationship between tissue structure and function only recently started to emerge, especially in the context of environmentally driven fruit opening and seed dispersal (responsive encapsulations) and the outstanding durability of some seed coats and indehiscent fruits (static encapsulations). In this review, we focus on the tissue properties of these two systems, with particular consideration of water interactions, mechanical resistance, and force generation. Common principles, as well as unique adaptations, are discussed in different plant species. Understanding how plants integrate a broad range of functions and properties for seed protection during storage and dispersal plays a central role for seed conservation, population dynamics, and plant-based material developments.


Assuntos
Magnoliopsida , Dispersão de Sementes , Adaptação Fisiológica , Frutas , Germinação , Sementes , Água
7.
Adv Mater ; 32(48): e2004519, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33079407

RESUMO

Many organisms encapsulate their embryos in hard, protective shells. While birds and reptiles largely rely on mineralized shells, plants often develop highly robust lignocellulosic shells. Despite the abundance of hard plant shells, particularly nutshells, it remains unclear which fundamental properties drive their mechanical stability. This multiscale analysis of six prominent (nut)shells (pine, pistachio, walnut, pecan, hazelnut, and macadamia) reveals geometric and structural strengthening mechanisms on the cellular and macroscopic length scales. The strongest tissues, found in walnut and pistachio, exploit the topological interlocking of 3D-puzzle cells and thereby outperform the fiber-reinforced structure of macadamia under tensile and compressive loading. On the macroscopic scale, strengthening occurs via an increased shell thickness, spherical shape, small size, and a lack of extended sutures. These functional interrelations suggest that simple geometric modifications are a powerful and resource-efficient strategy for plants to enhance the fracture resistance of entire shells and their tissues. Understanding the interplay between structure, geometry, and mechanics in hard plant shells provides new perspectives on the evolutionary diversification of hard seed coats, as well as insights for nutshell-based material applications.


Assuntos
Fenômenos Mecânicos , Plantas/anatomia & histologia , Fenômenos Biomecânicos
8.
Adv Sci (Weinh) ; 6(16): 1900644, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453070

RESUMO

The outer protective shells of nuts can have remarkable toughness and strength, which are typically achieved by a layered arrangement of sclerenchyma cells and fibers with a polygonal form. Here, the tissue structure of walnut shells is analyzed in depth, revealing that the shells consist of a single, never reported cell type: the polylobate sclereid cells. These irregularly lobed cells with concave and convex parts are on average interlocked with 14 neighboring cells. The result is an intricate arrangement that cannot be disassembled when conceived as a 3D puzzle. Mechanical testing reveals a significantly higher ultimate tensile strength of the interlocked walnut cell tissue compared to the sclerenchyma tissue of a pine seed coat lacking the lobed cell structure. The higher strength value of the walnut shell is explained by the observation that the crack cannot simply detach intact cells but has to cut through the lobes due to the interlocking. Understanding the identified nutshell structure and its development will inspire biomimetic material design and packaging concepts. Furthermore, these unique unit cells might be of special interest for utilizing nutshells in terms of food waste valorization, considering that walnuts are the most widespread tree nuts in the world.

9.
Front Plant Sci ; 10: 283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930918

RESUMO

Wildfires are a natural component in many terrestrial ecosystems and often play a crucial role in maintaining biodiversity, particularly in the fire-prone regions of Australia. A prime example of plants that are able to persist in these regions is the genus Banksia. Most Banksia species that occur in fire-prone regions produce woody seed pods (follicles), which open during or soon after fire to release seeds into the post-fire environment. For population persistence, many Banksia species depend on recruitment from these canopy-stored seeds. Therefore, it is critical that their seeds are protected from heat and rapid oxidation during fire. Here, we show how different species of Banksia protect their seeds inside follicles while simultaneously opening up when experiencing fire. The ability of the follicles to protect seeds from heat is demonstrated by intense 180 s experimental burns, in which the maximum temperatures near the seeds ranged from ∼75°C for B. serrata to ∼90°C for B. prionotes and ∼95°C for B. candolleana, contrasting with the mean surface temperature of ∼450°C. Many seeds of native Australian plants, including those of Banksia, are able to survive these temperatures. Structural analysis of individual follicles from these three Banksia species demonstrates that all of them rely on a multicomponent system, consisting of two valves, a porous separator and a thin layer of air surrounding the seeds. The particular geometric arrangement of these components determines the rate of heat transfer more than the tissue properties alone, revealing that a strong embedment into the central rachis can compensate for thin follicle valves. Furthermore, we highlight the role of the separator as an important thermal insulator. Our study suggests that the genus Banksia employs a variety of combinations in terms of follicle size, valve thickness, composition and geometric arrangement to effectively protect canopy-stored seeds during fire.

10.
J R Soc Interface ; 15(143)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925581

RESUMO

Many plants in fire-prone regions retain their seeds in woody fruits in the plant canopy until the passage of a fire causes the fruit to open and release the seeds. To enable this function, suitable tissues are required that effectively store and protect seeds until they are released. Here, we show that three different species of the Australian genus Banksia incorporate waxes at the interface of the two valves of the follicle enclosing the seeds, which melt between 45°C and 55°C. Since the melting temperature of the waxes is lower than the opening temperatures of the follicles in all investigated species (B. candolleana, B. serrata, B. attenuata), we propose that melting of these waxes allows the sealing of micro-fissures at the interface of the two valves while they are still closed. Such a self-sealing mechanism likely contributes to the structural integrity of the seed pods, and benefits seed viability and persistence during storage on the plants. Furthermore, we show in a simplified, bioinspired model system that temperature treatments seal artificially applied surface cuts and restore the barrier properties.


Assuntos
Temperatura Alta , Modelos Biológicos , Proteaceae/metabolismo , Sementes/metabolismo , Ceras/metabolismo
11.
Adv Sci (Weinh) ; 5(1): 1700572, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375977

RESUMO

Heat-triggered fruit opening and delayed release of mature seeds are widespread among plants in fire-prone ecosystems. Here, the material characteristics of the seed-containing follicles of Banksia attenuata (Proteaceae), which open in response to heat frequently caused by fire, are investigated. Material analysis reveals that long-term dimensional stability and opening temperatures of follicles collected across an environmental gradient increase as habitats become drier, hotter, and more fire prone. A gradual increase in the biaxial curvature of the hygroscopic valves provides the follicles in the driest region with the highest flexural rigidity. The irreversible deformation of the valves for opening is enabled via a temperature-dependent reduction of the elastic modulus of the innermost tissue layer, which then allows releasing the stresses previously generated by shrinkage of the fiber bundles in the adjacent layer during follicle drying. These findings illustrate the level of sophistication by which this species optimizes its fruit opening mechanism over a large distribution range with varying environmental conditions, and may not only have great relevance for developing biomimetic actuators, but also for elucidating the species' capacity to cope with climatic changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...