Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2405432, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206821

RESUMO

Genetic studies have identified the voltage-gated sodium channel 1.7 (Nav1.7) as pain target. Due to the ineffectiveness of small molecules and monoclonal antibodies as therapeutics for pain, single-domain antibodies (VHHs) are developed against the human Nav1.7 (hNav1.7) using a novel antigen presentation strategy. A 70 amino-acid peptide from the hNav1.7 protein is identified as a target antigen. A recombinant version of this peptide is grafted into the complementarity determining region 3 (CDR3) loop of an inert VHH in order to maintain the native 3D conformation of the peptide. This antigen is used to isolate one VHH able to i) bind hNav1.7, ii) slow the deactivation of hNav1.7, iii) reduce the ability of eliciting action potentials in nociceptors, and iv) reverse hyperalgesia in in vivo rat and mouse models. This VHH exhibits the potential to be developed as a therapeutic capable of suppressing pain. This novel antigen presentation strategy can be applied to develop biologics against other difficult targets such as ion channels, transporters and GPCRs.

2.
Mol Ther Oncol ; 32(1): 200775, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596311

RESUMO

Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22. Immunization of an adult Llama glama with CD22 protein, sdAb-cDNA library construction, and phage panning yielded >20 sdAbs with diverse epitope and binding properties. Expressing CD22-sdAb-CAR in Jurkat cells drove varying CD22-specific reactivity not correlated with antibody affinity. Changing CD28- to CD8-transmembrane design increased CAR persistence and expression in vitro. CD22-sdAb-CAR candidates showed similar CD22-dependent CAR-T expansion in vitro, although only membrane-proximal epitope targeting CD22-sdAb-CARs activated direct cytolytic killing and extended survival in a lymphoma xenograft model. Based on enhanced survival in blinded xenograft studies, a lead CD22sdCAR-T was selected, achieving comparable complete responses to a benchmark short linker m971-scFv CAR-T in high-dose experiments. Finally, immunohistochemistry and flow cytometry confirm tissue and cellular-level specificity of the lead CD22-sdAb. This presents a complete report on preclinical development of a novel CD22sdCAR therapeutic.

3.
Mol Cancer Ther ; 23(6): 836-853, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38394685

RESUMO

Mucin-16 (MUC16) is a target for antibody-mediated immunotherapy in pancreatic ductal adenocarcinoma (PDAC) among other malignancies. The MUC16-specific monoclonal antibody AR9.6 has shown promise for PDAC immunotherapy and imaging. Here, we report the structural and biological characterization of the humanized AR9.6 antibody (huAR9.6). The structure of huAR9.6 was determined in complex with a MUC16 SEA (Sea urchin sperm, Enterokinase, Agrin) domain. Binding of huAR9.6 to recombinant, shed, and cell-surface MUC16 was characterized, and anti-PDAC activity was evaluated in vitro and in vivo. HuAR9.6 bound a discontinuous, SEA domain epitope with an overall affinity of 88 nmol/L. Binding affinity depended on the specific SEA domain(s) present, and glycosylation modestly enhanced affinity driven by favorable entropy and enthalpy and via distinct transition state thermodynamic pathways. Treatment with huAR9.6 reduced the in vitro growth, migration, invasion, and clonogenicity of MUC16-positive PDAC cells and patient-derived organoids (PDO). HuAR9.6 blocked MUC16-mediated ErbB and AKT activation in PDAC cells, PDOs, and patient-derived xenografts and induced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. More importantly, huAR9.6 treatment caused substantial PDAC regression in subcutaneous and orthotopic tumor models. The mechanism of action of huAR9.6 may depend on dense avid binding to homologous SEA domains on MUC16. The results of this study validate the translational therapeutic potential of huAR9.6 against MUC16-positive PDACs.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno Ca-125 , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígeno Ca-125/imunologia , Antígeno Ca-125/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Appl Microbiol Biotechnol ; 108(1): 232, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396192

RESUMO

Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.


Assuntos
Anti-Infecciosos , Antígenos de Bactérias , Animais , Proteínas da Membrana Bacteriana Externa , Anticorpos , Bactérias Gram-Negativas , Anticorpos Antibacterianos , Vacinas Bacterianas , Mamíferos
5.
Methods Mol Biol ; 2702: 107-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679618

RESUMO

Naturally occurring heavy chain antibodies (HCAbs) in Camelidae species were a surprise discovery in 1993 by Hamers et al. Since that time, antibody fragments derived from HCAbs have garnered considerable attention by researchers and biotechnology companies. Due to their biophysico-chemical advantages over conventional antibody fragments, camelid single-domain antibodies (sdAbs, VHHs, nanobodies) are being increasingly utilized as viable immunotherapeutic modalities. Currently there are multiple VHH-based therapeutic agents in different phases of clinical trials in various formats such as bi- and multivalent, bi- and multi-specific, CAR-T, and antibody-drug conjugates. The first approved VHH, a bivalent humanized VHH (caplacizumab), was approved for treating rare blood clotting disorders in 2018 by the EMA and the FDA in 2019. This was followed by the approval of an anti-BCMA VHH-based CAR-T cell product in 2022 (ciltacabtagene autoleucel; CARVYKTI™) and more recently a trivalent antitumor necrosis factor alpha-based VHH drug (ozoralizumab; Nanozora®) in Japan for the treatment of rheumatoid arthritis. In this chapter we provide protocols describing the latest developments in isolating antigen-specific VHHs including llama immunization, construction of phage-displayed libraries, phage panning and screening of the soluble VHHs by ELISA, affinity measurements by surface plasmon resonance, functional cell binding by flow cytometry, and additional validation by immunoprecipitation. We present and discuss comprehensive, step-by-step methods for isolating and characterization of antigen-specific VHHs. This includes protocols for expression, biotinylation, purification, and characterization of the isolated VHHs. To demonstrate the feasibility of the entire strategy, we present examples of VHHs previously isolated and characterized in our laboratory.


Assuntos
Artrite Reumatoide , Bacteriófagos , Antígenos de Grupos Sanguíneos , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos Monoclonais , Bacteriófagos/genética , Biotecnologia , Camelidae , Fator V
6.
Methods Mol Biol ; 2702: 489-540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679637

RESUMO

Next-generation DNA sequencing (NGS) technologies have made it possible to interrogate antibody repertoires to unprecedented depths, typically via sequencing of cDNAs encoding immunoglobulin variable domains. In the absence of heavy-light chain pairing, the variable domains of heavy chain-only antibodies (HCAbs), referred to as single-domain antibodies (sdAbs), are uniquely amenable to NGS analyses. In this chapter, we provide simple and rapid protocols for producing and sequencing multiplexed immunoglobulin variable domain (VHH, VH, or VL) amplicons derived from a variety of sources using the Illumina MiSeq platform. Generation of such amplicon libraries is relatively inexpensive, requiring no specialized equipment and only a limited set of PCR primers. We also present several applications of NGS to sdAb discovery and engineering, including: (1) evaluation of phage-displayed sdAb library sequence diversity and monitoring of panning experiments; (2) identification of sdAbs of predetermined epitope specificity following competitive elution of phage-displayed sdAb libraries; (3) direct selection of B cells expressing antigen-specific, membrane-bound HCAb using antigen-coupled magnetic beads and identification of antigen-specific sdAbs, and (4) affinity maturation of lead sdAbs using tandem phage display selection and NGS. These methods can easily be adapted to other types of proteins and libraries and expand the utility of in vitro display technology.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Sequenciamento de Nucleotídeos em Larga Escala , Tecnologia , Linfócitos B , Técnicas de Visualização da Superfície Celular , Cadeias Pesadas de Imunoglobulinas/genética
7.
J Biol Chem ; 299(11): 105278, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742917

RESUMO

Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-ß-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring ß-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-ß-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-ß-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.


Assuntos
Região Variável de Imunoglobulina , Humanos , Sequência de Aminoácidos , Técnicas de Visualização da Superfície Celular , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Domínios Proteicos/genética , Escherichia coli/genética , Dobramento de Proteína
8.
Appl Microbiol Biotechnol ; 107(14): 4567-4580, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37284893

RESUMO

Acinetobacter baumannii is a Gram-negative bacterial pathogen that exhibits high intrinsic resistance to antimicrobials, with treatment often requiring the use of last-resort antibiotics. Antibiotic-resistant strains have become increasingly prevalent, underscoring a need for new therapeutic interventions. The aim of this study was to use A. baumannii outer membrane vesicles as immunogens to generate single-domain antibodies (VHHs) against bacterial cell surface targets. Llama immunization with the outer membrane vesicle preparations from four A. baumannii strains (ATCC 19606, ATCC 17961, ATCC 17975, and LAC-4) elicited a strong heavy-chain IgG response, and VHHs were selected against cell surface and/or extracellular targets. For one VHH, OMV81, the target antigen was identified using a combination of gel electrophoresis, mass spectrometry, and binding studies. Using these techniques, OMV81 was shown to specifically recognize CsuA/B, a protein subunit of the Csu pilus, with an equilibrium dissociation constant of 17 nM. OMV81 specifically bound to intact A. baumannii cells, highlighting its potential use as a targeting agent. We anticipate the ability to generate antigen-specific antibodies against cell surface A. baumannii targets could provide tools for further study and treatment of this pathogen. KEY POINTS: •Llama immunization with bacterial OMV preparations for VHH generation •A. baumannii CsuA/B, a pilus subunit, identified by mass spectrometry as VHH target •High-affinity and specific VHH binding to CsuA/B and A. baumannii cells.


Assuntos
Acinetobacter baumannii , Camelídeos Americanos , Animais , Acinetobacter baumannii/metabolismo , Membrana Celular/metabolismo , Antibacterianos/metabolismo , Proteínas de Membrana/metabolismo
10.
Front Microbiol ; 14: 1110541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778856

RESUMO

Crystal structures of camelid heavy-chain antibody variable domains (VHHs) bound to fragments of the combined repetitive oligopeptides domain of Clostridiodes difficile toxin A (TcdA) reveal that the C-terminus of VHH A20 was located 30 Å away from the N-terminus of VHH A26. Based on this observation, we generated a biparatopic fusion protein with A20 at the N-terminus, followed by a (GS)6 linker and A26 at the C-terminus. This A20-A26 fusion protein shows an improvement in binding affinity and a dramatic increase in TcdA neutralization potency (>330-fold [IC 50]; ≥2,700-fold [IC 99]) when compared to the unfused A20 and A26 VHHs. A20-A26 also shows much higher binding affinity and neutralization potency when compared to a series of control antibody constructs that include fusions of two A20 VHHs, fusions of two A26 VHHs, a biparatopic fusion with A26 at the N-terminus and A20 at the C-terminus (A26-A20), and actoxumab. In particular, A20-A26 displays a 310-fold (IC 50) to 29,000-fold (IC 99) higher neutralization potency than A26-A20. Size-exclusion chromatography-multiangle light scattering (SEC-MALS) analyses further reveal that A20-A26 binds to TcdA with 1:1 stoichiometry and simultaneous engagement of both A20 and A26 epitopes as expected based on the biparatopic design inspired by the crystal structures of TcdA bound to A20 and A26. In contrast, the control constructs show varied and heterogeneous binding modes. These results highlight the importance of molecular geometric constraints in generating highly potent antibody-based reagents capable of exploiting the simultaneous binding of more than one paratope to an antigen.

11.
J Biochem ; 173(2): 95-105, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36346120

RESUMO

Pathologies of the central nervous system impact a significant portion of our population, and the delivery of therapeutics for effective treatment is challenging. The insulin-like growth factor-1 receptor (IGF1R) has emerged as a target for receptor-mediated transcytosis, a process by which antibodies are shuttled across the blood-brain barrier (BBB). Here, we describe the biophysical characterization of VHH-IR4, a BBB-crossing single-domain antibody (sdAb). Binding was confirmed by isothermal titration calorimetry and an epitope was highlighted by surface plasmon resonance that does not overlap with the IGF-1 binding site or other known BBB-crossing sdAbs. The epitope was mapped with a combination of linear peptide scanning and hydrogen-deuterium exchange mass spectrometry (HDX-MS). IGF1R is large and heavily disulphide bonded, and comprehensive HDX analysis was achieved only through the use of online electrochemical reduction coupled with a multiprotease approach, which identified an epitope for VHH-IR4 within the cysteine-rich region (CRR) of IGF1R spanning residues W244-G265. This is the first report of an sdAb binding the CRR. We show that VHH-IR4 inhibits ligand induced auto-phosphorylation of IGF1R and that this effect is mediated by downstream conformational effects. Our results will guide the selection of antibodies with improved trafficking and optimized IGF1R binding characteristics.


Assuntos
Cisteína , Hidrogênio , Mapeamento de Epitopos/métodos , Barreira Hematoencefálica/metabolismo , Anticorpos Monoclonais , Epitopos , Espectrometria de Massas/métodos
12.
Commun Biol ; 5(1): 933, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085335

RESUMO

Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Anticorpos Monoclonais , Cricetinae , Humanos , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética
13.
Pharmaceutics ; 14(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890347

RESUMO

The ability of drugs and therapeutic antibodies to reach central nervous system (CNS) targets is greatly diminished by the blood-brain barrier (BBB). Receptor-mediated transcytosis (RMT), which is responsible for the transport of natural protein ligands across the BBB, was identified as a way to increase drug delivery to the brain. In this study, we characterized IGF1R5, which is a single-domain antibody (sdAb) that binds to insulin-like growth factor-1 receptor (IGF1R) at the BBB, as a ligand that triggers RMT and could deliver cargo molecules that otherwise do not cross the BBB. Surface plasmon resonance binding analyses demonstrated the species cross-reactivity of IGF1R5 toward IGF1R from multiple species. To overcome the short serum half-life of sdAbs, we fused IGF1R5 to the human (hFc) or mouse Fc domain (mFc). IGF1R5 in both N- and C-terminal mFc fusion showed enhanced transmigration across a rat BBB model (SV-ARBEC) in vitro. Increased levels of hFc-IGF1R5 in the cerebrospinal fluid and vessel-depleted brain parenchyma fractions further confirmed the ability of IGF1R5 to cross the BBB in vivo. We next tested whether this carrier was able to ferry a pharmacologically active payload across the BBB by measuring the hypothermic and analgesic properties of neurotensin and galanin, respectively. The fusion of IGF1R5-hFc to neurotensin induced a dose-dependent reduction in the core temperature. The reversal of hyperalgesia by galanin that was chemically linked to IGF1R5-mFc was demonstrated using the Hargreaves model of inflammatory pain. Taken together, our results provided a proof of concept that appropriate antibodies, such as IGF1R5 against IGF1R, are suitable as RMT carriers for the delivery of therapeutic cargos for CNS applications.

14.
ACS Infect Dis ; 8(7): 1336-1346, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653593

RESUMO

Pseudomonas aeruginosa produces a variety of cell surface glycans. Previous studies identified a common polysaccharide (PS) antigen often termed A-band PS that was composed of a neutral d-rhamnan trisaccharide repeating unit as a relatively conserved cell surface carbohydrate. However, nuclear magnetic resonance (NMR) spectra and chemical analysis of A-PS preparations showed the presence of several additional components. Here, we report the characterization of the carbohydrate component responsible for these signals. The carbohydrate antigen consists of an immunogenic methylated rhamnan oligosaccharide at the nonreducing end of the A-band PS. Initial studies performed with the isolated antigen permitted the production of conjugates that were used to immunize mice and rabbits and generate monoclonal and polyclonal antibodies. The polyclonal antibodies were able to recognize the majority of P. aeruginosa strains in our collection, and three monoclonal antibodies were generated, one of which was able to recognize and facilitate opsonophagocytic killing of a majority of P. aeruginosa strains. This monoclonal antibody was able to recognize all P. aeruginosa strains in our collection that includes clinical and serotype strains. Synthetic oligosaccharides (mono- to pentasaccharides) representing the terminal 3-O-methyl d-rhamnan were prepared, and the trisaccharide was identified as the antigenic determinant required to effectively mimic the natural antigen recognized by the broadly cross-reactive monoclonal antibody. These data suggest that there is considerable promise in this antigen as a vaccine or therapeutic target.


Assuntos
Desoxiaçúcares , Pseudomonas aeruginosa , Animais , Anticorpos Monoclonais , Desoxiaçúcares/química , Epitopos , Mananas , Camundongos , Polissacarídeos , Coelhos , Trissacarídeos
15.
FASEB J ; 36(3): e22208, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35192204

RESUMO

The blood-brain barrier (BBB) prevents the majority of drugs from crossing into the brain and reaching neurons. To overcome this challenge, safe and non-invasive technologies targeting receptor-mediated pathways have been developed. In this study, three single-domain antibodies (sdAbs; IGF1R3, IGF1R4, and IGF1R5) targeting the extracellular domain of the human insulin-like growth factor-1 receptor (IGF1R), generated by llama immunization, showed enhanced transmigration across the rat BBB model (SV-ARBEC) in vitro. The rate of brain uptake of these sdAbs fused to mouse Fc (sdAb-mFc) in vivo was estimated using the fluorescent in situ brain perfusion (ISBP) technique followed by optical brain imaging and distribution volume evaluation. Compared to the brains perfused with the negative control A20.1-mFc, the brains perfused with anti-IGF1R sdAbs showed a significant increase of the total fluorescence intensity (~2-fold, p < .01) and the distribution volume (~4-fold, p < .01). The concentration curve for IGF1R4-mFc demonstrated a linear accumulation plateauing at approximately 400 µg (~1 µM), suggesting a saturable mechanism of transport. Capillary depletion and mass spectrometry analyses of brain parenchyma post-ISBP confirmed the IGF1R4-mFc brain uptake with ~25% of the total amount being accumulated in the parenchymal fraction in contrast to undetectable levels of A20.1-mFc after a 5-min perfusion protocol. Systemic administration of IGF1R4-mFc fused with the non-BBB crossing analgesic peptide galanin (2 and 5 mg/kg) induced a dose-dependent suppression of thermal hyperalgesia in the Hargreaves pain model. In conclusion, novel anti-IGF1R sdAbs showed receptor-mediated brain uptake with pharmacologically effective parenchymal delivery of non-permeable neuroactive peptides.


Assuntos
Barreira Hematoencefálica/metabolismo , Receptor IGF Tipo 1/imunologia , Anticorpos de Cadeia Única/farmacocinética , Animais , Permeabilidade Capilar , Linhagem Celular , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Anticorpos de Cadeia Única/imunologia
16.
Methods Mol Biol ; 2446: 245-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157277

RESUMO

Binding affinity is one of the primary determinants of antibody function. Here, we provide a protocol for simple and rapid affinity maturation of single-domain antibodies (sdAbs) using tandem phage display selection and next-generation DNA sequencing. The sequence of a model camelid sdAb directed against Clostridioides difficile toxin A (A26.8) was diversified using either random or site-saturation mutagenesis and cloned into a phagemid vector upstream of gene 3. The resulting phage-displayed sdAb libraries were panned against C. difficile toxin A and the panning outputs interrogated using Illumina MiSeq sequencing. Through bioinformatic analyses, we were able to identify individual affinity-enhancing amino acid substitutions in the sdAb complementarity-determining regions that, when combined, resulted in affinity improvements of approximately 10-fold. The advantages of this method are that it does not require extensive screening and characterization of individual clones, nor structural information on the mechanism of the sdAb:antigen interaction.


Assuntos
Clostridioides difficile , Anticorpos de Domínio Único , Afinidade de Anticorpos , Técnicas de Visualização da Superfície Celular/métodos , Clostridioides difficile/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biblioteca de Peptídeos , Análise de Sequência de DNA , Anticorpos de Domínio Único/química
17.
Biochem Biophys Res Commun ; 562: 154-161, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34058562

RESUMO

Overexpression of Axl, a TAM-family receptor tyrosine kinase, plays key roles in the formation, growth, and spread of tumors as well as resistance to targeted therapies and chemotherapies. We identified novel llama VHHs against human Axl using multiple complementary phage display selection strategies and characterized a subset of high-affinity VHHs. The VHHs targeted multiple sites in Ig-like domains 1 and 2 of the Axl extracellular domain, including an immunodominant epitope overlapping the site of Gas6 interaction and two additional non-Gas6 competitive epitopes recognized by murine monoclonal antibodies. Only a subset of VHHs cross-reacted with cynomolgus monkey Axl and none recognized mouse Axl. As fusions to human IgG1 Fc, VHH-Fcs bound Axl+ tumor cell lines and mertansine-loaded VHH-Fcs were cytotoxic in vitro against Axl+ cells in proportion to their binding affinities. Engineered biparatopic VHH-VHH heterodimers bound Axl avidly, and a subset of molecules showed dramatically enhanced association rates indicative of intramolecular binding. These VHHs may have applications as modular elements of biologic drugs such as antibody-drug conjugates.


Assuntos
Afinidade de Anticorpos/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Células CHO , Camelídeos Americanos , Morte Celular , Linhagem Celular Tumoral , Cricetulus , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cinética , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores Proteína Tirosina Quinases/química , Proteínas Recombinantes de Fusão/metabolismo
18.
Mol Pharm ; 18(6): 2375-2384, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33999642

RESUMO

Multispecific antibodies that bridge immune effector and tumor cells have shown promising preclinical and clinical efficacies. Here, we isolated and characterized novel llama single-domain antibodies (sdAbs) against CD16. One sdAb, NRC-sdAb048, bound recombinant human and cynomolgus monkey CD16 ectodomains with equivalent affinity (KD: 1 nM) but did not recognize murine CD16. Binding was similar for human CD16a expressed on NK cells and CD16b (NA2) expressed on neutrophils but dramatically weaker (KD: ∼6 µM) for the CD16b (NA1) allotype. The sdAb stained primary human peripheral blood NK cells. Irrespective of fusion orientation and linker length, bispecific sdAb-sdAb and sdAb-scFv dimers (anti-CD16/EGFR, anti-CD16/HER2, and anti-CD16/CD19) retained full binding affinity for each target, coengaged both antigens simultaneously, elicited ADCC against target antigen-expressing tumor cells in a reporter bioassay, and triggered target-specific activation and degranulation of primary NK cells as measured via interferon-γ and CD107a expression. These molecules may have applications in cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos/metabolismo , Células Matadoras Naturais/transplante , Neoplasias/terapia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Domínio Único/metabolismo , Animais , Anticorpos Biespecíficos/genética , Citotoxicidade Celular Dependente de Anticorpos , Antígenos de Neoplasias/metabolismo , Bioensaio , Camelídeos Americanos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Humanos , Imunoterapia/métodos , Células Jurkat , Células Matadoras Naturais/metabolismo , Macaca fascicularis , Camundongos , Neoplasias/imunologia , Cultura Primária de Células , Domínios Proteicos/genética , Receptores de IgG/antagonistas & inibidores , Receptores de IgG/genética , Proteínas Recombinantes de Fusão/genética , Anticorpos de Domínio Único/genética
19.
Sci Rep ; 11(1): 4284, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608571

RESUMO

Ligand-activated signaling through the type 1 insulin-like growth factor receptor (IGF1R) is implicated in many physiological processes ranging from normal human growth to cancer proliferation and metastasis. IGF1R has also emerged as a target for receptor-mediated transcytosis, a transport phenomenon that can be exploited to shuttle biotherapeutics across the blood-brain barrier (BBB). We employed differential hydrogen-deuterium exchange mass spectrometry (HDX-MS) and nuclear magnetic resonance (NMR) to characterize the interactions of the IGF1R ectodomain with a recently discovered BBB-crossing single-domain antibody (sdAb), VHH-IR5, in comparison with IGF-1 binding. HDX-MS confirmed that IGF-1 induced global conformational shifts in the L1/FnIII-1/-2 domains and α-CT helix of IGF1R. In contrast, the VHH-IR5 sdAb-mediated changes in conformational dynamics were limited to the α-CT helix and its immediate vicinity (L1 domain). High-resolution NMR spectroscopy titration data and linear peptide scanning demonstrated that VHH-IR5 has high-affinity binding interactions with a peptide sequence around the C-terminal region of the α-CT helix. Taken together, these results define a core linear epitope for VHH-IR5 within the α-CT helix, overlapping the IGF-1 binding site, and suggest a potential role for the α-CT helix in sdAb-mediated transcytosis.


Assuntos
Barreira Hematoencefálica/metabolismo , Mapeamento de Epitopos , Epitopos , Receptor IGF Tipo 1/antagonistas & inibidores , Anticorpos de Domínio Único/farmacologia , Sequência de Aminoácidos , Afinidade de Anticorpos/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/imunologia , Receptor IGF Tipo 1/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia
20.
FASEB J ; 34(6): 8155-8171, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32342547

RESUMO

Prolonged serum half-life is required for the efficacy of most protein therapeutics. One strategy for half-life extension is to exploit the long circulating half-life of serum albumin by incorporating a binding moiety that recognizes albumin. Here, we describe camelid single-domain antibodies (VH Hs) that bind the serum albumins of multiple species with moderate to high affinity at both neutral and endosomal pH and significantly extend the serum half-lives of multiple proteins in rats from minutes to days. We serendipitously identified an additional VH H (M75) that is naturally pH-sensitive: at endosomal pH, binding affinity for human serum albumin (HSA) was dramatically weakened and binding to rat serum albumin (RSA) was undetectable. Domain mapping revealed that M75 bound to HSA domain 1 and 2. Moreover, alanine scanning of HSA His residues suggested a critical role for His247, located in HSA domain 2, in M75 binding and its pH dependence. Isothermal titration calorimetry experiments were suggestive of proton-linked binding of M75 to HSA, with differing binding enthalpies observed for full-length HSA and an HSA domain 1-domain 2 fusion protein in which surface-exposed His residues were substituted with Ala. M75 conferred moderate half-life extension in rats, from minutes to hours, likely due to rapid dissociation from RSA during FcRn-mediated endosomal recycling in tandem with albumin conformational changes induced by M75 binding that prevented interaction with FcRn. Humanized VH Hs maintained in vivo half-life extension capabilities. These VH Hs represent a new set of tools for extending protein therapeutic half-life and one (M75) demonstrates a unique pH-sensitive binding interaction that can be exploited to achieve modest in vivo half-life.


Assuntos
Produtos Biológicos/metabolismo , Albumina Sérica/metabolismo , Animais , Linhagem Celular , Endossomos/metabolismo , Células HEK293 , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Masculino , Ligação Proteica/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA