Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132048, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704062

RESUMO

Polysaccharides are favourable and promising biopolymers for wound care applications due to their abundant natural availability, low cost and excellent biocompatibility. They possess different functional groups, such as carboxylic, hydroxyl and amino, and can easily be modified to obtain the desirable properties and various forms. This review systematically analyses the recent progress in polysaccharides derived materials for wound care applications, emphasizing the most commonly used cellulose, chitosan, alginate, starch, dextran and hyaluronic acid derived materials. The distinctive attributes of each polysaccharide derived wound care material are discussed in detail, along with their different forms, i.e., films, membranes, sponges, nanoemulsions, nanofibers, scaffolds, nanocomposites and hydrogels. The processing methods to develop polysaccharides derived wound care materials are also summarized. In the end, challenges related to polysaccharides derived materials in wound care management are listed, and suggestions are given to expand their utilization in the future to compete with conventional wound healing materials.

2.
J Mol Graph Model ; 130: 108791, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38776762

RESUMO

A novel series of alkaline earthides containing eight complexes based upon 36adz complexant are designed by placing carefully transition metals (V-Zn) on inner side and alkaline earth metal outer side of the complexant i.e., M+(36adz) Be- (M+ = V, Cr, Mn, Fe, Co, Ni, Cu and Zn). All the designed compounds are electronically and thermodynamically stable as evaluated by their interaction energy and vertical ionization potential respectively. Moreover, the true nature of alkaline earthides is verified through NBOs and FMO study, showing negative charge and excess electrons on alkaline earth metal respectively. Furthermore, true alkaline earthides characteristics are evaluated graphically by spectra of partial density state (PDOS). The energy gap (HOMO -LUMO gap) is very small (ranging 2.95 eV-1.89 eV), when it is compared with pure cage 36adz HOMO-LUMO gap i.e., 8.50 eV. All the complexes show a very small value of transition energy ranging from 1.68eV to 0.89eV. Also, these possess higher hyper polarizability values up to 2.8 x 105au (for Co+(36adz) Be-). Furthermore, an increase in hyper polarizability was observed by applying external electric field on complexes. The remarkable increase of 100fold in hyper polarizability of Zn+(36adz) Be- complex is determined after application of external electric field i.e., from 1.7 x 104 au to 1.7 x 106 au when complex is subjected to external electric field of 0.001 au strength. So, when external electric field is applied on complexes it enhances the charge transfer, polarizability and hyper polarizability of complexes and proves to be effective for designing of true alkaline earthides with remarkable NLO response.

3.
ACS Biomater Sci Eng ; 10(4): 2116-2132, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38498674

RESUMO

Due to excellent biocompatibility, bioactivities, and osteoconductivity, hydroxyapatite (HAp) is considered as one of the most suitable biomaterials for numerous biomedical applications. Herein, HAp was fabricated using a bottom-up approach, i.e., a wet chemical method, and its composites with TiC, h-BN, and ZrO2 were fabricated by a solid-state reaction method with enhanced mechanical and biological performances. Structural, surface morphology, and mechanical behavior of the fabricated composites were characterized using various characterization techniques. Furthermore, transmission electron microscopy study revealed a randomly oriented rod-like morphology, with the length and width of these nanorods ranging from 78 to 122 and from 9 to 13 nm. Moreover, the mechanical characterizations of the composite HZBT4 (80HAp-10TiC-5h-BN-5ZrO2) reveal a very high compressive strength (246 MPa), which is comparable to that of the steel (250 MPa), fracture toughness (14.78 MPa m1/2), and Young's modulus (1.02 GPa). In order to check the biocompatibility of the composites, numerous biological tests were also performed on different body organs of healthy adult Sprague-Dawley rats. This study suggests that the composite HZBT4 could not reveal any significant influence on the hematological, serum biochemical, and histopathological parameters. Hence, the fabricated composite can be used for several biological applications, such as bone implants, bone grafting, and bone regeneration.


Assuntos
Durapatita , Nanocompostos , Ratos , Animais , Durapatita/toxicidade , Durapatita/química , Ratos Sprague-Dawley , Materiais Biocompatíveis/toxicidade , Osso e Ossos , Nanocompostos/toxicidade
4.
R Soc Open Sci ; 11(2): 231094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356872

RESUMO

Owing to the broad applications of quaternary ammonium salts (QAS), we present the synthesis of benzimidazolium-based analogues with variation in the alkyl and alkoxy group at N-1 and N-3 positions. All the compounds were characterized by spectroscopic techniques and found stable to air and moisture both in the solid and solution state. Moreover, molecular structures were established through single-crystal X-ray diffraction studies. The crystal packing of the compounds was stabilized by numerous intermolecular interactions explored by Hirshfeld surface analysis. The enrichment ratio was calculated for the pairs of chemical species to acquire the highest propensity to form contacts. Void analysis was carried out to check the mechanical response of the compounds. Furthermore, theoretical investigations were also performed to explore the optoelectronic properties of compounds. Natural population analysis (NPA) has been conducted to evaluate the distribution of charges on the synthesized compounds, whereas high band gaps of the synthesized compounds by frontier molecular orbital (FMO) analysis indicated their stability. Nonlinear optical (NLO) analysis revealed that the synthesized QAS demonstrates significantly improved NLO behaviour than the standard urea.

5.
Sci Rep ; 14(1): 2128, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267527

RESUMO

The most common denture material used for dentistry is poly-methyl-methacrylate (PMMA). Usually, the polymeric PMMA material has numerous biological, mechanical and cost-effective shortcomings. Hence, to resolve such types of drawbacks, attempts have been made to investigate fillers of the PMMA like alumina (Al2O3), silica (SiO2), zirconia (ZrO2) etc. For the enhancement of the PMMA properties a suitable additive is required for its orthopedic applications. Herein, the main motive of this study was to synthesize a magnesium oxide (MgO) reinforced polymer-based hybrid nano-composites by using heat cure method with superior optical, biological and mechanical characteristics. For the structural and vibrational studies of the composites, XRD and FT-IR were carried out. Herein, the percentage of crystallinity for all the fabricated composites were also calculated and found to be 14.79-30.31. Various physical and optical parameters such as density, band gap, Urbach energy, cutoff energy, cutoff wavelength, steepness parameter, electron-phonon interaction, refractive index, and optical dielectric constant were also studied and their values are found to be in the range of 1.21-1.394 g/cm3, 5.44-5.48 eV, 0.167-0.027 eV, 5.68 eV, 218 nm, 0.156-0.962, 4.273-0.693, 1.937-1.932, and 3.752-3.731 respectively. To evaluate the mechanical properties like compressive strength, flexural strength, and fracture toughness of the composites a Universal Testing Machine (UTM) was used and their values were 60.3 and 101 MPa, 78 and 40.3 MPa, 5.85 and 9.8 MPa-m1/2 respectively. Tribological tests of the composites were also carried out. In order to check the toxicity, MTT assay was also carried out for the PM0 and PM15 [(x)MgO + (100 - x) (C5O2H8)n] (x = 0 and 15) composites. This study provides a comprehensive insight into the structural, physical, optical, and biological features of the fabricated PMMA-MgO composites, highlighting the potential of the PM15 composite with its enhanced density, mechanical strength, and excellent biocompatibility for denture applications.


Assuntos
Óxido de Magnésio , Polimetil Metacrilato , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros , Materiais Dentários
6.
Int Immunopharmacol ; 126: 111259, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992446

RESUMO

Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.


Assuntos
Tiossemicarbazonas , Animais , Ovinos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Carragenina , Estrutura Molecular , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/farmacologia
7.
ACS Omega ; 8(39): 36493-36505, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810689

RESUMO

Hydrogen is currently considered as the best alternative for traditional fuels due to its sustainable and ecofriendly nature. Additionally, hydrogen dissociation is a critical step in almost all hydrogenation reactions, which is crucial in industrial chemical production. A cost-effective and efficient catalyst with favorable activity for this step is highly desirable. Herein, transition-metal-doped fullerene (TM@C60) complexes are designed and investigated as single-atom catalysts for the hydrogen splitting process. Interaction energy analysis (Eint) is also carried out to demonstrate the stability of designed TM@C60 metallofullerenes, which reveals that all the designed complexes have higher thermodynamic stability. Furthermore, among all the studied metallofullerenes, the best catalytic efficiency for hydrogen dissociation is seen for the Sc@C60 catalyst Ea = 0.13 eV followed by the V@C60 catalyst Ea = 0.19 eV. The hydrogen activation and dissociation processes over TM@C60 metallofullerenes is further elaborated by analyzing charge transfer via the natural bond orbital and electron density difference analyses. Additionally, quantum theory of atoms in molecule analysis is carried out to investigate the nature of interatomic interactions between hydrogen molecules and TMs@C60 metallofullerenes. Overall, results of the current study declare that the Sc@C60 catalyst can act as a low cost, highly efficient, and noble metal-free single-atom catalyst to efficiently catalyze hydrogen dissociation reaction.

8.
J Biochem Mol Toxicol ; 37(10): e23433, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394811

RESUMO

In this work, four fluorinated α, ß-unsaturated ketones named as 3-(3-bromophenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (1), 3-(4-methoxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (2), 3-(3-bromo-5-chloro-2-hydroxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (3) and 3-(2-hydroxy-5-methylphenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (4) were synthesized by Claisen-Schmidt reaction. The synthesized molecules were then characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), 1 H-NMR, 13 C-NMR, and mass spectrometry. The antioxidant potential, Urease inhibition, and interaction of compounds 1-4 with Salmon sperm DNA were experimentally explored and supported by molecular docking studies. The synthesized compounds strongly interact with SS-DNA through intercalative mode. It was noticed that compound 1 served as potent Urease inhibitor while compound 4 as better antioxidant among synthesized compounds. Moreover, frontier molecular orbitals, nonlinear optical (NLO) properties, natural bond orbitals, molecular electrostatic potential, natural population analysis, and photophysical properties of synthesized compounds were accomplished through density functional theory and time-dependent density functional theory. The band gap of all the compounds have been worked out using Taucs method. In addition to that, a precise comparative account of UV and IR data obtained from theoretical and experimental findings showed good agreement between theoretical and experimental data. The findings of our studies reflected that compounds 1-4 possess better NLO properties than Urea standard and the band gap data also reflected their prospective use towards optoelectronic materials. The better NLO behavior of compounds was attributed to the noncentrosymmetric structure of synthesized compounds.


Assuntos
Antioxidantes , Urease , Masculino , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Sêmen , DNA , Espectrofotometria Ultravioleta
9.
J Mech Behav Biomed Mater ; 145: 106032, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506567

RESUMO

Herein, present study mainly focuses on the synthesis and characterizations of boron nitride reinforced waste zirconia (wZrO2) with different concentrations. Composites were prepared via a scalable solid-state reaction method. Various physical parameters such as density, ionic concentration, polaron radius, and field strength were evaluated. XRD results reveal crystalline nature with a major phase of tetragonal zirconia and as boron nitride is reinforced, the tetragonal transforms into a monoclinic zirconia. Interconnected spherical grains and nanosheets were observed using FESEM. Mechanical characterizations revealed the highest compressive strength of 266 MPa. The latent fingerprints were visualized using a composite on different surfaces, implementing the powder dusting and solution techniques. MTT assay was performed and revealed good biocompatible nature. These results reveal that composite is suitable for fabrication of bioceramics with acceptable mechanical and biological performances. The composite can also be utilized for latent fingerprint detection in forensic science.


Assuntos
Cerâmica , Zircônio , Teste de Materiais , Cerâmica/química , Propriedades de Superfície , Zircônio/química
10.
ACS Omega ; 8(5): 4767-4781, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777570

RESUMO

The performance of organic solar cells (OSCs) has been improving steadily over the last few years, owing to the optimization of device fabrication, fine-tuning of morphology, and thin-film processing. Thiophene core containing fused ring-type non-fullerene acceptors (NFAs) achieved significant proficiency for highly efficient OSCs. Quantum chemical computations are utilized herein with the motive of suggesting new NIR sensitive, highly efficient low-band gap materials for OSCs. A series of extended conjugated A-π-D-π-A architectured novel fused-ring NFAs (FUIC-1-FUIC-6) containing thieno[2,3-b]thiophene-based donor core are proposed by substituting the end-capped units of synthesized molecule F10IC. Different properties including frontier molecular orbital analysis, density of states analysis, transition density matrix analysis, excitation energy, reorganizational energies of both holes (λh) and electrons (λe), and open-circuit voltage (V oc) were performed employing the density functional theory approach. Charge transfer analysis of the best-designed molecule with the donor complex was analyzed to comprehend the efficiency of novel constructed molecules (FUIC-1-FUIC-6) and compared with the reference. End-caped acceptor alteration induces the reduction of the energy gap between HOMO-LUMO (1.88 eV), tunes the energy levels, longer absorption in the visible and near-infrared regions, larger V oc, smaller reorganizational energies, and binding energy values in designed structures (FUIC-1-FUIC-6) in comparison to reference (FUIC). The designed molecules show the best agreement with the PTBT-T donor polymer blend and cause the highest charge from the HOMO to the LUMO orbital. Our findings predicted that thieno[2,3-b] thiophene-based newly designed molecules would be efficient NFAs with outstanding photovoltaic characteristics and can be used in future applications of OSCs.

11.
Polymers (Basel) ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850121

RESUMO

Proteins-derived polymeric micelles have gained attention and revolutionized the biomedical field. Proteins are considered a favorable choice for developing micelles because of their biocompatibility, harmlessness, greater blood circulation and solubilization of poorly soluble drugs. They exhibit great potential in drug delivery systems as capable of controlled loading, distribution and function of loaded agents to the targeted sites within the body. Protein micelles successfully cross biological barriers and can be incorporated into various formulation designs employed in biomedical applications. This review emphasizes the recent advances of protein-based polymeric micelles for drug delivery to targeted sites of various diseases. Most studied protein-based micelles such as soy, gelatin, casein and collagen are discussed in detail, and their applications are highlighted. Finally, the future perspectives and forthcoming challenges for protein-based polymeric micelles have been reviewed with anticipated further advances.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122322, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36652802

RESUMO

Y-series-based non-fullerene acceptors (NFAs) have achieved significant deliberation by chemists and physicists because the promising optical and photochemical properties associated with high-performance OSCs can be further tuned through end-capped modification. In this work, such modifications of Y-series benzothiadiazole-based NFAs were accomplished theoretically to propose new acceptors for photovoltaic cells (PVCs). The recently synthesized Y-series non-fullerene acceptor m-BTP-PhC6 was taken as a reference acceptor. We designed five new acceptors (BTP1-BTP5) through the structural modification at both ends of acceptor groups and evaluated their performance by applying DFT and TD-DFT. The newly engineered molecules exhibited a narrower bandgap (Eg) than the reference (R) resulting in better intramolecular charge transfer (ICT). Further, the designed acceptors expressed the maximum absorption in the region of 600-800 nm revealing a redshift in their absorption spectrum. Low excitation energy and low exciton binding energy were noted for designed acceptors confirming them as better candidates for high PCE of solar cells. Low reorganizational energy for the mobility of holes and electrons was also observed for the designed molecules, indicating improved charge transfer properties. The newly tailored acceptor BTP4 was found to be the promising candidate among all acceptors because of lower bandgap, lower exciton binding energy, reorganizational energy, and redshift of the absorption spectrum. The complex analysis of BTP4 with donor polymer PTB7-Th and PM6 was executed at the same DFT level. Furthermore, FMOs studies showed relatively rich electron density in the acceptor groups of LUMO as compared to the reference molecule. The overall theoretical results of this study showed that the designed acceptors played a productive and effective role in uplifting the efficiency of fullerene-free energy devices.

13.
Antioxidants (Basel) ; 11(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883906

RESUMO

Propolis (bee glue) is a complex, phyto-based resinous material obtained from beehives. Its chemical and biological properties vary with respect to bee species, type of plants, geographical location, and climate of a particular area. This study was planned with the aim of determining the chemical composition and to investigate various properties (against oxidants and microbes) of different extracts of Saudi propolis collected from Arabian honey bee (Apis mellifera jemenitica) colonies headed by young queens. Chemical analysis of propolis extracts with different solvents, i.e., ethyl acetate (Eac), methanol (Met), butanol (BuT), and hexane (Hex) was done through colorimetry for the total phenolic content (TPC) and total flavonoid content (TFC) evaluation. For separation and extensive characterization of the Met extract, chromatography and 1H NMR were deployed. Six different microorganisms were selected to analyze the Saudi-propolis-based extract's antimicrobial nature by measuring zones of inhibition (ZOI) and minimum inhibitory concentration (MIC). Molecular docking was done by utilizing AutodDock, and sketching of ligands was performed through Marvin Chem Sketch (MCS), and the resultant data after 2D and 3D clean were stored in .mol format. The highest TFC (96.65 mg quercetin equivalents (QE)/g of propolis) and TPC (325 mg gallic acid equivalents (GAE)/g of propolis) were noted for Met. Six familiar compounds were isolated, and recognition was done with NMR. Met extract showed the greatest 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging activity and Ferric Reducing Antioxidant Power (FRAP). Met showed max microbial activity against Staphylococcus aureus (ZOI = 18.67 mm, MIC = 0.625 mg/mL), whereas the minimum was observed in Hex against E. coli (ZOI = 6.33 mm, MIC = 2.50 mg/mL). Furthermore, the molecular docking process established the biological activity of separated compounds against HCK (Hematopoietic cell kinase) and Gyrase B of S. aureus. Moreover, the stability of protein-ligand complexes was further established through molecular dynamic simulation studies, which showed that the receptor-ligand complexes were quite stable. Results of this research will pave the way for further consolidated analysis of propolis obtained from Arabian honey bees (A. m. jemenitica).

14.
ACS Omega ; 7(19): 16716-16727, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601321

RESUMO

End-capped modification is an efficient approach for enhancing the power conversion efficiency of organic solar cells (OSCs). Herein, five novel acceptor molecules have been designed by end-capper modification of the recently synthesized molecule NTIC (R). Different geometric and photovoltaic properties like frontier molecular orbital analysis, absorption maximum, transition density matrix analysis, reorganizational energy, binding energy, oscillator strength, energy of excitation, and charge transfer analysis of designed and reference molecules have been computed by employing density functional theory and time-dependent density functional theory. Designed molecules expressed a narrow energy band gap (E g) with red-shifting in the absorption spectrum. Additionally, low excitation and binding energies are also noted in designed molecules. Excellent values of hole and electron reorganizational energies suggested that designed molecules are effective contributors to the development of the active layer of the organic solar cells. Further, a complex study is also performed for evaluation of charge transfer between the acceptor molecule and the donor polymer. Results of all analyses recommended that designed molecules are effective candidates for high-performance organic solar cell applications.

16.
Polymers (Basel) ; 14(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335477

RESUMO

Essential oils (EOs) have received attention in the food industry for developing biopolymer-derived food packaging materials. EOs are an excellent choice to replace petroleum-derived additives in food packaging materials due to their abundance in nature, eco-friendliness, and superior antimicrobial and antioxidant attributes. Thus far, EOs have been used in cellulose-, starch-, chitosan-, and protein-based food packaging materials. Biopolymer-based materials have lower antioxidant and antibacterial properties in comparison with their counterparts, and are not suitable for food packaging applications. Various synthetic-based compounds are being used to improve the antimicrobial and antioxidant properties of biopolymers. However, natural essential oils are sustainable and non-harmful alternatives to synthetic antimicrobial and antioxidant agents for use in biopolymer-derived food packaging materials. The incorporation of EOs into the polymeric matrix affects their physicochemical properties, particularly improving their antimicrobial and antioxidant properties. EOs in the food packaging materials increase the shelf life of the packaged food, inhibit the growth of microorganisms, and provide protection against oxidation. Essential oils also influence other properties, such as tensile, barrier, and optical properties of the biopolymers. This review article gives a detailed overview of the use of EOs in biopolymer-derived food packaging materials. The innovative ways of incorporating of EOs into food packaging materials are also highlighted, and future perspectives are discussed.

17.
Arab J Chem ; 15(1): 103473, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34909065

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) pandemic has become a global challenge based on its replication within the host cells that relies on non-structural proteins, protease (Mpro). Flavonoids, an important class of naturally occurring compounds with medicinal importance, are frequently available within fruits and vegetables. Herein, we report the in silico studies on naturally occurring flavonoids consisting of molecular docking studies and evaluation of theoretical kinetics. In this study, we prepared a library of nine different classes of naturally occurring flavonoids and screened them on Autodock and Autodockvina. The pharmacokinetic properties of most promising compounds have been predicted through ADMET SAR, inhibition constants, ligand efficiency and ligand fit quality have been worked out theoretically. The results revealed that naturally occurring flavonoids could fit well in the receptor's catalytic pocket, interact with essential amino acid residues and could be useful for future drug candidates through in vitro and in vivo studies. Moreover, MD simulation studies were conducted for two most promising flavonoids and the protein-ligand complexes were found quite stable. The selected natural flavonoids are free from any toxic effects and can be consumed as a preventive measure against SARS CoV-2.

18.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067122

RESUMO

Organic materials development, especially in terms of nonlinear optical (NLO) performance, has become progressively more significant owing to their rising and promising applications in potential photonic devices. Organic moieties such as carbazole and quinoline play a vital role in charge transfer applications in optoelectronics. This study reports and characterizes the donor-acceptor-donor-π-acceptor (D-A-D-π-A) configured novel designed compounds, namely, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1. We further analyze the structure-property relationship between the quinoline-carbazole compounds for which density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed at the B3LYP/6-311G(d,p) level to obtain the optimized geometries, natural bonding orbital (NBO), NLO analysis, electronic properties, and absorption spectra of all mentioned compounds. The computed values of λmax, 364, 360, and 361 nm for Q3, Q4, and Q5 show good agreement of their experimental values: 349, 347, and 323 nm, respectively. The designed compounds (Q3D1-Q5D1) exhibited a smaller energy gap with a maximum redshift than the reference molecules (Q3-Q5), which govern their promising NLO behavior. The NBO evaluation revealed that the extended hyperconjugation stabilizes these systems and caused a promising NLO response. The dipole polarizabilities and hyperpolarizability (ß) values of Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1 exceed those of the reference Q3, Q4, and Q5 molecules. These data suggest that the NLO active compounds, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1, may find their place in future hi-tech optical devices.

20.
AAPS PharmSciTech ; 21(5): 153, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32449007

RESUMO

The supply of affordable, high-quality pharmaceuticals to US patients has been on a critical path for decades. In and beyond the COVID-19 pandemic, this critical path has become tortuous. To regain reliability, reshoring of the pharmaceutical supply chain to the USA is now a vital national security need. Reshoring the pharmaceutical supply with old know-how and outdated technologies that cause inherent unpredictability and adverse environmental impact will neither provide the security we seek nor will it be competitive and affordable. The challenge at hand is complex akin to redesigning systems, including corporate and public research and development, manufacturing, regulatory, and education ones. The US academic community must be engaged in progressing solutions needed to counter emergencies in the COVID-19 pandemic and in building new methods to reshore the pharmaceutical supply chain beyond the pandemic.


Assuntos
Antivirais/provisão & distribuição , Betacoronavirus/efeitos dos fármacos , Defesa Civil/organização & administração , Infecções por Coronavirus/terapia , Necessidades e Demandas de Serviços de Saúde/organização & administração , Avaliação das Necessidades/organização & administração , Pandemias , Pneumonia Viral/terapia , Vacinas Virais/provisão & distribuição , Antivirais/economia , Betacoronavirus/patogenicidade , COVID-19 , Vacinas contra COVID-19 , Defesa Civil/economia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/economia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Custos de Medicamentos , Necessidades e Demandas de Serviços de Saúde/economia , Humanos , Avaliação das Necessidades/economia , Pandemias/economia , Pneumonia Viral/economia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Estados Unidos , Vacinas Virais/economia , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...