Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(11): 347, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872270

RESUMO

CONTEXT: In the present work, the cubic phase of the chalcogenide materials, i.e., A2MoSe4 (A =Li, K) is examined to explore the structural, optoelectronic, magnetic, mechanical, vibrational, and thermodynamic properties. The lattice parameters for Li2MoSe4 are found to be a= 7.62 Å with lattice angles of α=ß=γ=90° whereas for K2MoSe4, a= 8.43 Å, and α=ß=γ=90°. These materials are categorized as semiconductors because Li2MoSe4 and K2MoSe4 exhibit direct energy band gap worth 1.32 eV and 1.61 eV, respectively through HSE06 functional. The optical analysis has declared them efficient materials for optoelectronic applications because both materials are found to be effective absorbers of ultraviolet radiations. These materials are noticed to be brittle while possessing anisotropic behavior for various mechanical applications. The vibrational properties are explored to check the thermal stability of the materials. On the basis of thermodynamics and heat capacity response, Li2MoSe4 is more stable than K2MoSe4. The results of our study lay the groundwork for future research on the physical characteristics of ternary transition metal chalcogenides (TMC). METHODS: These physical properties are explored for the first time while using a first-principles approach based on density functional theory (DFT) in the framework of Cambridge Serial Total Energy Package (CASTEP) by Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) functional. However, GGA+U and HSE06 are also employed to improve electronic properties. Kramers-Kronig relations are used to evaluate the dielectric function with a smearing value of 0.5 eV. Voigt-Reuss-Hill approximation is used for seeking the elastic response of these materials. The thermodynamic response is sought by harmonic approximation. The density functional perturbation theory (DFPT) approach is used for investigating atomic vibrations.

2.
RSC Adv ; 12(7): 4395-4407, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425429

RESUMO

The first-principles approach has been used while employing the Perdew-Burke-Ernzerhof exchange-correlation functional of generalized gradient approximation (PBE-GGA) along with the Hubbard parameter to study the structural, optoelectronic, mechanical and magnetic properties of titanium-based MAX materials Ti3AC2 (A = P, As, Cd) for the first time. As there is no band gap found between the valence and conduction bands in the considered materials, these compounds belong to the conductor family of materials. A mechanical analysis carried out at pressures of 0 GPa to 20 GPa and the calculated elastic constants C ij reveal the stability of these materials. Elastic parameters, i.e., Young's, shear and bulk moduli, anisotropy factor and Poisson's ratio, have been investigated in the framework of the Voigt-Reuss-Hill approximation. The calculated values of relative stiffness are found to be greater than ½ for Ti3PC2 and Ti3AsC2, which indicates that these compounds are closer to typical ceramics, which possess low damage tolerance and fracture toughness. Optical parameters, i.e., dielectric complex function, refractive index, extinction coefficient, absorption coefficient, loss function, conductivity and reflectivity, have also been investigated. These dynamically stable antiferromagnetic materials might have potential applications in advanced electronic and magnetic devices. Their high strength and significant hardness make these materials potential candidates as hard coatings.

3.
J Mol Graph Model ; 103: 107825, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33429230

RESUMO

The structural, electronic and thermoelectric properties of AZr1-xMxO3 (A = Ba, Ca, Sr; M = Al, Cu, x = 0.25) without and with an oxygen vacancy (Vo) have been unveiled using the Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) functional along with Tran-Blaha modified Becke-Jonhson (TB-mBJ)approximation based on Density Functional Theory (DFT) in the framework of WIEN2k code for memristors applications. Moreover, isosurface charge density plots have been calculated by using Vienna ab initio Simulation Package (VASP) simulation code. The analysis of structural parameters reveals that substituting Zr4+ with Al3+ and Cu2+ causes the lattice distortion which tends to increase in the presence of Vo along with dopant. The study of band structure, density of states (DOS) and isosurface charge density plots predict the enhanced charge conduction and formation of conducting filaments (CFs) for all composites with dopant and/or Vo. Moreover, spin polarized density of states for Cu doped composites has also been calculated to confirm the large exchange splitting of Cu-3d states. The thermoelectric characteristics of considered composites have also been explored using the Boltztrap code to better explain the semi-classical Boltzmann transport theory. Thermoelectric parameters confirm the semiconductor nature of all composites, ensuring the compatibility for memristors and thermoelectric devices applications. In addition to this spin polarized thermoelectric behavior of Cu doped composites that ensure the contribution of spin down (↓) states of Cu for charge transport mechanism. The SrZrCuO3+Vo composite is found most promising candidate followed by BaZrCuO3 for memristors applications while, CaZrCuO3 is found most suitable amongst studied composites for thermoelectric devices.


Assuntos
Eletrônica , Oxigênio , Simulação por Computador , Condutividade Elétrica , Semicondutores
4.
J Mol Graph Model ; 99: 107621, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32339899

RESUMO

The mechanical, magnetic and thermoelectric properties of spin polarized XGaO3 (X = Sc, Ti, Ag) perovskite oxides in cubic phase have been investigated using LDA + U functional through ab-initio study based on density functional theory (DFT) in the framework of WIEN2K simulation code. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) technique along with PBE-GGA functional have been used to optimize the systems and determining exchange-correlation potential. However, in order to address on-site self-interactions error and overcome limitations of PBE-GGA functional, LDA + U has been employed because Hubbard parameter 'U' is found an appropriate remedy to consider on-site self-interactions, and to calculate improved electronic energy band gap. All spin polarized band structures reveal indirect band gap with different energies Eg (eV) such as ↑↓ 0.98 eV for ScGaO3, ↑1.05 eV and ↓1.70 eV for TiGaO3, ↑1.13 eV and ↓2.19 eV for AgGaO3. Thus, all compounds are semiconductor in nature. The analysis of spin polarized total and partial density of states unveil that ScGaO3 is non-magnetic material, whereas, TiGaO3 and AgGaO3 are characterized by strong exchange splitting of 3d (Ti) and 4d (Ag) states with significant spin magnetic moments, i.e., 1.0002 µB and -2.0002 µB, respectively. The elastic constants, i.e., Bulk, Young and Shear moduli, Poisson's coefficient, Anisotropy factor, Pugh's ratio, Cauchy pressure and melting temperature are calculated through Viogt-Reuss-Hill approximation. The thermoelectric response of the considered perovskites has been determined through semi-classical Boltzmann transport theory in the framework of BoltzTraP simulation code. Basic understandings of the mechanical, magnetic and thermoelectric properties of these compounds are studied for the first time in this manuscript.


Assuntos
Prata , Titânio , Compostos de Cálcio , Fenômenos Magnéticos , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...