Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7069, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528067

RESUMO

In this study, the efficacy of the combined effect of borate and silicate alkali metal salts added to mortars for controlling the chloride-induced uniform and localized corrosion of embedded steel rebars is examined. The individually added salts in mortars are found to have insignificant effects in terms of reducing the uniform corrosion rate and localized damage. However, their combination (0.50% sodium tetra borate + 0.10% sodium silicate added with respect to the weight of the binder) provides complete protection to reinforcements tested for long durations under wet/dry treatments with mortars in saline water and laboratory atmospheres. Electrochemical impedance spectroscopy, direct current cyclic polarization, polarization resistance, and visual observations are used for quantitative and qualitative evaluations of the protective effects of the tested additives. X-ray diffraction analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis of the corrosion products formed on the embedded steel surfaces help explain the possible mechanisms behind the considerable improvement in the inhibitive effects of a mixed composition of borate and silicate. This combination also improves the compressive strength and workability of the mixed concrete. The results reveal that the synergistic protection provided by a mixture of borate and silicate can be attributed to the co-deposition of an iron-boron + ferrosilicate + cortensitite (an iron-silicon phase) film on the rebar surface.

2.
Sci Rep ; 12(1): 12449, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864189

RESUMO

This communication reports the effect of phosphorus (P) added in micro concentration range in steel on kinetics, mechanism and growth of passive film in contact of chloride contaminated concrete. Electrochemical impedance spectroscopy, direct-current polarization, mass loss and Raman spectroscopic techniques were used to arrive at the findings. The results showed that an intentional addition of P in steel (0.064%) makes it more prone to uniform and localized corrosion (about 1.1 and 1.7 times) than the steel having low phosphorus (< 0.016%, present as tramp element) exposed under wet/dry conditions in simulated pore solution added with chloride and in the absence of this ion. A similar effect is also noted for the rebars embedded in mortars. Identification of corrosion products formed on steel rebars surface by Raman spectroscopy reveals thermodynamically stable maghemite and goethite phases on the surface of low P content steel. Unstable phase of lepidocrocite is recorded on the surface of higher phosphorus steel rebars. The findings are discussed with experimental evidence and taking clues from the published literature to arrive at plausible mechanism for this behaviour.

3.
Materials (Basel) ; 14(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947189

RESUMO

This paper investigates the effect of high ambient temperatures on the chloride threshold value for reinforced concrete (RC) structures. Two commonly available carbon steel rebars were investigated under four different exposure temperatures (20 °C (68 °F), 35 °C (95 °F), 50 °C (122 °F), and 65 °C (149 °C)) using environmental chambers at a constant relative humidity of 80%. For each temperature, six different levels of added chloride ions (0.00%, 0.15%, 0.30%, 0.60%, 0.90%, and 1.20% by weight of cement) were used to study the chloride threshold value. Corrosion initiation was detected by monitoring the corrosion potential and corrosion rate using electrochemical techniques. The water-soluble (free) and acid-soluble (total) chlorides were determined using potentiometric titration according to the relevant ASTM standards. The threshold chloride content for each exposure temperature was determined by analyzing the corrosion potential, corrosion rate, and chloride content of each specimen. The results showed that the chloride threshold values were significantly temperature-dependent. At temperatures of 20 °C (68 °F) and 35 °C (95 °F), the chloride threshold value (expressed as free chlorides) was approximately 0.95% by weight of cement. However, as the temperature increased to 50 °C (122 °F), the chloride threshold decreased significantly to approximately 0.70% by weight of cement. The reduction in the chloride threshold value became more dramatic at an exposure temperature of 65 °C (149 °F), decreasing to approximately 0.25% by weight of cement. The trends were similar for the rebars from the two sources, indicating that the rebar source had little influence on the chloride threshold value.

4.
Sci Rep ; 9(1): 3399, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833629

RESUMO

Steel structures significantly degrades owing to corrosion especially in coastal and industrial areas where significant amounts of aggressive ions are present. Therefore, anodic metals such as Al and Zn are used to protect steel. In the present study, we provide insights for the corrosion mechanism and kinetics of Al-Zn pseudo alloy coating deposited on mild steel plate via an arc thermal spraying process in 3.5 wt.% NaCl solution in terms of its improved corrosion resistance properties at prolonged exposure durations. Electrochemical studies including open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) on the deposited coating at longer exposure durations revealed enhanced corrosion resistance properties while the morphology of corrosion products through field emission-scanning electron microscopy (FE-SEM) indicated their compactness and adherence. Furthermore, atomic force microscopy (AFM) confirmed reduced roughness when compared with that of unexposed coating. Additionally, X-ray diffraction (XRD) and Raman spectroscopy results confirmed the formation of protective, adherent, and sparingly soluble Simonkolleite (Zn5(OH)8Cl2.H2O) after 55 d of exposure in 3.5 wt.% NaCl solution. A schematic is proposed that explains the corrosion process of Al-Zn pseudo alloy coating in 3.5 wt.% NaCl solution from the deposition of coating and initiation of corrosion to longer exposure durations.

5.
Materials (Basel) ; 12(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669650

RESUMO

This study was aimed to investigate the effect of steel, polypropylene (PP), and hybrid (steel + PP) fibers on high-temperature mechanical properties of reactive powder concrete (RPC). The mechanical properties considered are cubic compressive strength, axial or prismatic compressive strength, split-tensile strength, flexural strength, elastic modulus, peak strain, and stress-strain behavior. The strength recession due to high temperature was investigated at micro level by scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, mercury intrusion porosity, thermogravimetric, and differential scanning calorimetry analyses. The high-temperature tests were carried out at target temperatures of 120, 300, 500, 700, and 900 °C. The hot-state compressive strength of RPC started to decrease at 120 °C; however, a partial recovery at 300 °C and a gradual decrease above 300 °C were observed. The degradation of split-tensile strength, flexural strength, and elastic modulus were gradual with increasing temperature despite the effect of different fibers. Whereas, the peak strain was gradually increasing up to 700 °C. However, after 700 °C, it remained unchanged. Steel fiber reinforced RPC (SRPC) and hybrid fiber reinforced RPC (HRPC) showed a ductile behavior. PP fiber reinforced RPC (PRPC) showed a quite brittle behavior up to 300 °C; however, further heating made the microstructure porous and it became ductile too. Overall the performance of SRPC and HRPC were superior to PRPC because of higher modulus of elasticity, higher strength, and better fire resistance of steel fibers. Fiber reinforced RPC was found to have better fire resistance than traditional types of concrete based on comparative studies with the provisions of design codes and earlier research. The constitutive equations developed can be utilized in computer programs for structural design of RPC structures exposed to fire.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...