Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23527, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169932

RESUMO

Neuroinflammation contributes to the pathogenesis of several neurodegenerative disorders. This study examined the neuroprotective effect of quercetin (QUR)-loaded poly (lactic-co-glycolic) acid (PLGA) nanoparticles (QUR NANO) against the neurotoxicity induced by lipopolysaccharide (LPS) in mice. A QUR NANO formulation was prepared and characterized by differential scanning calorimetry, X-ray diffraction, entrapment efficiency (EE), high-resolution transmission electron microscopy, field emission scanning electron microscopy, and in vitro drug release profile. Levels of glutathione, malondialdehyde, catalase, inducible nitric oxide synthase (iNOS), amyloid beta 42 (Aß42), ß-secretase, gamma-aminobutyric acid (GABA), and acetylcholine esterase (AChE) were measured in the mouse brain tissues. The gene expression of nuclear factor erythroid-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) were also determined. The prepared QUR NANO formulation showed 92.07 ± 3.21% EE and drug loading of 4.62 ± 0.55. It exhibited clusters of nano-spherical particles with smooth surface areas, and the loading process was confirmed. In vivo, the QUR NANO preserved the spatial memory of mice and protected the hippocampus from LPS-induced histological lesions. The QUR NANO significantly reduced the levels of malondialdehyde, iNOS, Aß42, ß-secretase, and AChE in brain tissue homogenates. Conversely, QUR NANO increased the glutathione, catalase, and GABA concentrations and upregulated the expression of Nrf-2 and HO-1 genes. Remarkably, the neuroprotective effect of QUR NANO was significantly greater than that of herbal QUR. In summary, the prepared QUR NANO formulation was efficient in mitigating LPS-induced neurotoxicity by reducing memory loss, oxidative stress, and amyloidogenesis while preserving neurotransmission and upregulating the expression of Nrf2 and HO-1 genes. This study addresses several key factors in neuroinflammatory disorders and explores the potential of QUR-loaded nanoparticles as a novel therapeutic approach to alleviate these factors.

2.
Biol Trace Elem Res ; 202(5): 2158-2169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37676407

RESUMO

Gastric ulcers are one of the most prevalent gastrointestinal disorders. The current study investigated the antioxidant and anti-inflammatory effects of selenium (Se) and lecithin (Lec) alone and in combination against ethanol-induced gastric ulcers in mice, and their ability to modulate insulin-like growth factor-1 (IGF-1)/ Phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/ Protein kinase B (Akt)/ Forkhead box O3a (FoxO3a) signaling. The mice were divided into normal, ethanol, Se + ethanol, Lec + ethanol, Se + Lec + ethanol, and omeprazole + ethanol groups. Treatment with the selected doses was continued for 14 days before a single dose of absolute ethanol (5 ml/kg body weight) was administered to induce gastric ulcers in mice. The results showed that pretreatment with Se and Lec combination effectively decreased both the macro- and microscopic gastric lesions and increased the protection index compared to the ethanol group. Remarkably, the Se and Lec combination decreased the levels of reactive oxygen species, malondialdehyde, and cytochrome c and increased glutathione, glutathione peroxidase, and thioredoxin reductase activities in gastric tissues. The Se and Lec combination increased prostaglandin E2 and interleukin-10 levels but decreased tumor necrosis factor-α, interleukin-6 and interleukin-1ß levels compared to either treatment alone. Interestingly, this combination decreased the expression of IGF-1, p-Akt, and FoxO3a proteins and increased PTEN expression in gastric tissues. The gastric tissues examination by hematoxylin and eosin staining confirmed these results. Therefore, the Se and Lec combination showed superior protective effects against ethanol-induced gastric ulcers in mice, compared to either treatment alone, through antioxidant, and anti-inflammatory activities, in addition to modulating IGF-1/PTEN/Akt/FoxO3a pathway signaling.


Assuntos
Selênio , Úlcera Gástrica , Camundongos , Animais , Antioxidantes/metabolismo , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico , Selênio/metabolismo , Lecitinas/metabolismo , Lecitinas/farmacologia , Lecitinas/uso terapêutico , Etanol/toxicidade , Fator de Crescimento Insulin-Like I/metabolismo , Anti-Inflamatórios/farmacologia , Mucosa Gástrica
3.
Diabetes Metab Syndr ; 17(10): 102872, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797393

RESUMO

BACKGROUND AND AIM: Long non-coding RNAs (lncRNAs) have been recognized as important regulators of gene expression in various human diseases. Diabetes mellitus (DM) is a long-term metabolic disorder associated with serious macro and microvascular complications. This review discusses the potential lncRNAs involved in DM-related complications such as dysfunction of pancreatic beta islets, nephropathy, retinopathy, cardiomyopathy, and peripheral neuropathy. METHODS: An extensive literature search was conducted in the Scopus database to find information from reputed biomedical articles published on lncRNAs and diabetic complications from 2014 to 2023. All review articles were collected and statistically analyzed, and the findings were summarized. In addition, the potential lncRNAs involved in DM-related complications, molecular mechanisms, and gene targets were discussed in detail. RESULTS: The lncRNAs ANRIL, E33, MALAT1, PVT1, Erbb4-IR, Gm4419, Gm5524, MIAT, MEG3, KNCQ1OT1, Uc.48+, BC168687, HOTAIR, and NONRATT021972 were upregulated in several diabetic complications. However, ßlinc1, H19, PLUTO, MEG3, GAS5, uc.322, HOTAIR, MIAT, TUG1, CASC2, CYP4B1-PS1-001, SOX2OT, and Crnde were downregulated. Remarkably, lncRNAs MALAT1, ANRIL, MIAT, MEG3, H19, and HOTAIR were overlapping in more than one diabetic complication and were considered potential lncRNAs. CONCLUSION: Several lncRNAs are identified as regulators of DM-related complications. The expression of lncRNAs is up or downregulated depending on the disease context, target genes, and regulatory partners. However, most lncRNAs target oxidative stress, inflammation, apoptosis, fibrosis, and angiogenesis pathways to mediate their protective/pathogenic mechanism of action and contribute to DM-related complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Complicações do Diabetes/genética , Inflamação , Fibrose , Diabetes Mellitus/genética
4.
Int Immunopharmacol ; 117: 109969, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012866

RESUMO

Edaravone (ED) is a neuroprotective drug with beneficial effects against several disorders due to its prominent antioxidant activity. However, its effect against methotrexate (MTX)-induced testicular damage was not previously investigated. Therefore, we aimed to investigate the ability of ED to prevent the oxidative stress, inflammation, and apoptosis induced by MTX on the rat testis and to examine whether ED administration modulated the Akt/p53 signaling and steroidogenesis process. Rats were allocated into; Normal, ED (20 mg/kg, PO, for 10 days), MTX (20 mg/kg, i.p., on the 5th day), and ED + MTX groups. The results showed that MTX group exhibited higher serum activities of ALT, AST, ALP, and LDH in addition to histopathological alterations in the rat testis, compared to normal group. Furthermore, MTX induced down-regulation of the steroidogenic genes; StAR, CYP11a1, and HSD17B3 and reduced FSH, LH, and testosterone levels. The MTX group also showed higher levels of MDA, NO, MPO, NF-kB, TNF-α, IL-6, IL-1ß, Bax, and caspase 3, as well as, lower levels of GSH, GPx, SOD, IL-10, Bcl2 compared to normal rats, p < 0.05. In addition, MTX treatment resulted in increased p53 expression and decreased p-Akt expression. Remarkably, ED administration significantly prevented all the biochemical, genetic, and histological damage induced by MTX. Hence, ED treatment protected the rat testis from apoptosis, oxidative stress, inflammation, and impaired steroidogenesis induced by MTX. This novel protective effect was mediated by decreasing p53 while increasing p-Akt protein expression.


Assuntos
Metotrexato , Doenças Testiculares , Masculino , Humanos , Ratos , Animais , Metotrexato/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Edaravone , Proteína Supressora de Tumor p53/metabolismo , Ratos Wistar , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Estresse Oxidativo
5.
Life Sci ; 314: 121256, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549352

RESUMO

Idiopathic pulmonary fibrosis is a terminal lung ailment that shares several pathological and genetic mechanisms with severe COVID-19. Thymol (THY) is a dietary compound found in thyme species that showed therapeutic effects against various diseases. However, the effect of THY against bleomycin (BLM)-induced lung fibrosis was not previously investigated. The current study investigated the ability of THY to modulate oxidative stress, inflammation, miR-29a/TGF-ß expression, and PI3K/phospho-Akt signaling in lung fibrosis. Mice were divided into Normal, THY (100 mg/kg, p.o.), BLM (15 mg/kg, i.p.), BLM + THY (50 mg/kg, p.o.), and BLM + THY (100 mg/kg, p.o.) groups and treated for four weeks. The obtained results showed that BLM + THY (50 mg/kg) and BLM + THY (100 mg/kg) reduced fibrotic markers; α-SMA and fibronectin, inflammatory mediators; TNF-α, IL-1ß, IL-6, and NF-kB and oxidative stress biomarkers; MDA, GSH, and SOD, relative to BLM group. Lung histopathological examination by H&E and Masson's trichrome stains confirmed the obtained results. Remarkably, expression levels of TGF-ß, PI3K, and phospho-Akt were decreased while miR-29a expression was elevated. In conclusion, THY effectively prevented BLM-induced pulmonary fibrosis by exerting significant anti-oxidant and anti-inflammatory effects. Our novel findings that THY upregulated lung miR-29a expression while decreased TGF-ß and PI3K/Akt signaling are worthy of further investigation as a possible molecular mechanism for THY's anti-fibrotic actions.


Assuntos
COVID-19 , MicroRNAs , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Bleomicina/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Timol/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , COVID-19/patologia , Inflamação/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , Fibrose , MicroRNAs/metabolismo
6.
Arch Physiol Biochem ; 129(4): 847-853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33529079

RESUMO

OBJECTIVE: This study, for the first time, investigates the effect of gum acacia (GA) on the expression of miR-33 and miR-155 and its association with the obesity and inflammation induced by Western diet (WD) consumption in mice. METHODS: Animals were divided into: normal diet (ND) group, WD group, GA group and GA + WD group. RESULTS: The WD group exhibited higher total body, liver, visceral fat weights, blood total cholesterol, triglycerides and glucose levels compared to ND group. The liver tissues showed severe inflammation and degeneration with higher hepatic TNF-α level. Interestingly, GA + WD group showed a decrease in the biochemical parameters and hepatic TNF-α level but had no effect on the weight increase. It also showed a significant upregulation of miR-33 and miR-155 compared to WD group. CONCLUSIONS: GA mitigated the hyperlipidaemia and inflammation but not weight increase induced by WD ingestion via upregulation of miR-33 and miR-155 while reducing TNF-α level.


Assuntos
Hiperlipidemias , MicroRNAs , Camundongos , Animais , Goma Arábica/metabolismo , Goma Arábica/farmacologia , Dieta Ocidental/efeitos adversos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Regulação para Cima , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Inflamação/genética , Inflamação/metabolismo , Aumento de Peso , MicroRNAs/genética , MicroRNAs/metabolismo , Ingestão de Alimentos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
7.
J Med Food ; 25(8): 807-817, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35235435

RESUMO

Neuroinflammation is an adaptive immune response to the central nervous system (CNS) injury induced by infection or toxins. MicroRNAs (miRs) showed critical roles in neuroinflammation as either proinflammatory or anti-inflammatory molecules. Interestingly, Portulaca oleracea (purslane) is an edible plant capable of ameliorating several diseases, including headache, burns, and diabetes; however, its effect on the neuroinflammation-associated miRs was not previously investigated. This study aimed to investigate the effect of aqueous purslane extract on the neuroinflammation induced by lipopolysaccharide (LPS) in mice and to identify its effect on animal cognition, oxidative stress, and expressions of miR-146a and miR-let 7. Adult mice were divided into the following groups: Normal group, LPS group, and Purslane+LPS group. Novel target recognition test, brain histopathology, and measurement of oxidative stress and inflammatory markers were performed. The results showed that LPS group exhibited significant decline in the cognitive memory, brain histopathological injury and a decrease in the number of intact neurons compared to the normal group. Furthermore, the LPS group showed a significant increase in malondialdehyde concentration, whereas superoxide dismutase and catalase activities were decreased. The LPS group also showed an increase in the inflammatory markers tumor necrosis factor-α and nuclear factor kappa B and downregulation of miR-146a and miR-let 7 expressions in the brain cells compared to the normal group, P value <.05. Interestingly, all these changes were reversed by administration of the aqueous purslane extract. In conclusion, the aqueous purslane extract protected from LPS-induced neuroinflammation and memory decline in mice through antioxidant and anti-inflammatory effect where upregulation of miR-146a and miR-1et 7 expressions was involved.


Assuntos
MicroRNAs , Portulaca , Animais , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/efeitos adversos , Transtornos da Memória , Camundongos , MicroRNAs/genética , Doenças Neuroinflamatórias , Estresse Oxidativo , Extratos Vegetais/farmacologia
8.
J Liposome Res ; 32(4): 365-375, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35132919

RESUMO

Curcumin (Cur) is a natural compound that exhibited therapeutic effects against various liver injuries however Cur showed poor water solubility and bioavailability. This study aimed to design Cur-loaded solid lipid nanoparticles (SLNs) and to evaluate the hepatoprotective and antioxidant effects in a model of acute hepatotoxicity induced by paracetamol (PCM) overdose compared to the raw Cur and N-acetylcysteine (NAC). SLNs were prepared by emulsion/solvent evaporation method and 32 factorial design was employed. Wistar rats were divided into Control, PCM, PCM + NAC, PCM + raw Cur, and PCM + Cur-SLNs groups and treated orally for 14 days before receiving a single PCM dose. The Cur-loaded SLNs showed high entrapment efficiency % ranging between 69.1 and 92.1%, particle size (PS) between 217 and 506 nm, and zeta potential values between -17.9 and -25.5 mV. The in vivo results revealed that the PCM group exhibited deterioration of liver functions, pathological lesions on the liver tissues, severe oxidative stress, and increases in both the serum and hepatic iNOS levels. Remarkably, the PCM + Cur-SLNs group showed significantly better liver functions and tissue integrity compared to the PCM group. Furthermore, higher reduced glutathione and catalase but lower malondialdehyde and iNOS levels were observed. In conclusion, Cur-loaded SLNs effectively prevented the liver damage induced by PCM overdose through alleviating the oxidative stress and inhibiting the serum and hepatic iNOS expression in an effect comparable to NAC and better than raw Cur.


Assuntos
Curcumina , Nanopartículas , Animais , Ratos , Curcumina/farmacologia , Lipossomos , Acetaminofen , Óxido Nítrico Sintase Tipo II , Ratos Wistar , Acetilcisteína
9.
J Biochem Mol Toxicol ; 35(9): e22856, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34318554

RESUMO

Cisplatin-induced nephrotoxicity limits its wide application as a chemotherapeutic drug. Betaine is a natural trimethylglycine compound involved in several biological reactions. In this study, the protective effect of betaine against cisplatin-induced nephrotoxicity through modulating the expression of microRNA 34a (miRNA 34a), p53, apoptosis, and inflammation was investigated. Adult Wistar rats were divided into normal group (received vehicle); betaine group (received 250 mg betaine/kg BW/day via oral gavage from Day 1 to Day 25); cisplatin group (received a single intraperitoneal dose of cisplatin at 5 mg/kg BW on Day 21) and betaine + cisplatin group (received the same doses of betaine and cisplatin). The results demonstrated that the cisplatin group exhibited severe kidney tissue damage and an increase in blood creatinine and urea levels. Furthermore, the cisplatin group showed a significant upregulation of miRNA 34a and higher levels of phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1ß compared to the normal group. Remarkably, the betaine + cisplatin group showed significantly decreased blood creatinine and urea concentrations, decreased levels of miRNA 34a, phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1ß as well as improved kidney tissue integrity compared to the cisplatin group. In conclusion, cisplatin-induced nephrotoxicity in rats was associated with upregulation of miRNA 34a expression, apoptosis, and inflammation in p53-dependent manner. These effects were reversed by betaine administration that ultimately improved the kidney function and tissue integrity.


Assuntos
Betaína/farmacologia , Cisplatino/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Nefropatias , MicroRNAs/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Animais , Cisplatino/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Ratos , Ratos Wistar
10.
Life Sci ; 277: 119460, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811899

RESUMO

BACKGROUND AND AIMS: The normal functioning of Kelch-like ECH-associated protein-1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) complex is necessary for the cellular protection against oxidative stress. We investigated the effect of chlorogenic acid (CGA), quercetin (Qt), coenzyme Q10 (Q10) and silymarin on the expression of Keap1/Nrf2 complex and its downstream target; heme oxygenase-1 (HO-1) as well as inflammation and apoptosis in an acute liver toxicity model induced by thioacetamide (TAA). MAIN METHODS: Wistar rats were divided into 13 groups: Control, silymarin, CGA, Qt, Q10, TAA (single dose 50 mg/kg, i.p.), TAA + silymarin (400 mg/kg, p.o.), TAA + CGA (100 & 200 mg/kg, p.o.), TAA + Qt (200 &300 mg/kg, p.o.) and TAA+ Q10 (30&50 mg/kg, p.o.) and treated for 8 days. KEY FINDINGS: The results showed improved liver functions and hepatic tissue integrity in all tested doses of TAA + silymarin, TAA + CGA, TAA + Qt and TAA + Q10 groups compared to the TAA group. Furthermore, these groups showed significantly lower ROS, malondialdehyde and nitric oxide levels but higher glutathione content and superoxide dismutase activity compared to the TAA group, p < 0.05. In these groups, Keap1 expression was significantly decreased while Nrf2 expression and HO-1 activity were increased. In addition, the number of apoptotic cells and the expression level of TNF-α in the liver tissues were significantly decreased compared to the TAA group. SIGNIFICANCE: CGA, Qt, Q10 and silymarin protect against TAA-induced acute liver toxicity via antioxidant, anti-inflammatory, anti-apoptotic activities and regulating Keap1-Nrf2/HO-1 expression.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia , Heme Oxigenase (Desciclizante)/fisiologia , Heme Oxigenase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/fisiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Fator 2 Relacionado a NF-E2/fisiologia , Quercetina/metabolismo , Quercetina/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Silimarina/metabolismo , Silimarina/farmacologia , Tioacetamida/efeitos adversos , Tioacetamida/farmacologia , Tioacetamida/toxicidade , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/farmacologia
11.
Chem Biol Interact ; 324: 109098, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32278740

RESUMO

This study evaluates the possible protective effects of gallic acid (GaA) and ferulic acid (FeA) against an experimentally induced liver fibrosis by thioacetamide (TAA) in rats. Animals were divided into: Control group, GaA group (20 mg/kg/day, p.o), FeA (20 mg/kg/day, p.o), TAA group (receiving 250 mg/kg twice/week, I.P), TAA + GaA group, TAA + FeA group (received the same previous doses) and TAA+silymarin group (received silymarin at 100 mg/kg/day+TAA as mentioned above). After 6 consecutive weeks, animals were sacrificed and the assessment of liver functions, oxidative stress biomarkers and histopathological examination of the liver tissues were performed. In addition, the effect on TGF-ß1/Smad3 signaling and the expression of miR-21, miR-30 and miR-200 were evaluated. The results showed that administration of GaA or FeA with TAA induced a significant reduction in serum ALT, AST and ALP activities and protected the integrity of liver tissues. Furthermore, they increased the activities of the hepatic antioxidant enzymes; superoxide dismutase and catalase while decreased malondialdehyde content to a normal level. The hepatic expression of TGF-ß1, phosphorylated and total Smad3 proteins were significantly decreased. In addition, miR-21 expression was downregulated while miR-30 and miR-200 expressions were upregulated by administration of gallic acid or ferulic acid. In conclusion, gallic and ferulic acids exhibit hepatoprotective and antioxidant effects against TAA-induced liver fibrosis in rats. These effects are mediated through inhibition of TGF-ß1/Smad3 signaling and differentially regulating the hepatic expression level of miR-21, miR-30 and miR-200.


Assuntos
Ácidos Cumáricos/uso terapêutico , Ácido Gálico/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Substâncias Protetoras/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Regulação para Baixo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , MicroRNAs/metabolismo , Ratos Wistar , Proteína Smad3/metabolismo , Tioacetamida , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
12.
Clin Exp Pharmacol Physiol ; 47(2): 322-332, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31663622

RESUMO

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Oxidative stress contributes significantly to HCC pathogenesis. In this study, we investigated the possible chemoprotective effect of the thiol group-containing compound, tiopronin, against HCC induced chemically by diethylnitrosamine (DENA) in rats. In addition, we elucidated the possible underlying molecular mechanism. Adult male Wistar rats were divided into: Control group, DENA-treated group and tiopronin + DENA-treated group. Liver function tests (ALT, AST, ALP, albumin, total and direct bilirubin) as well as alpha fetoprotein (AFP) concentration were measured in the sera of samples. Oxidative stress biomarkers such as malondialdehyde, nitric oxide, catalase and glutathione peroxidase were measured in the liver tissue homogenates. Determination of the phosphorylated apoptosis signal-regulating kinase 1 (phospho-ASK1), phospho-P38 and phospho-P53 proteins by western blotting, caspase 3 by immunofluorescence in addition to histopathological examination of the liver tissues were performed. Our results showed that tiopronin prevented the DENA-induced elevation of the liver function enzymes and AFP. It also preserved the activities of antioxidant enzymes as well as providing protection from the appearance of HCC histopathological features. Interestingly, tiopronin significantly decreased the expression level of phospho-ASK1, phospho-P38 and phospho-P53, caspase 3 in the liver tissues. These novel findings suggested that tiopronin is an antioxidant drug with a chemoprotective effect against DENA-induced HCC through maintaining the normal activity of ASK1/ P38 MAPK/ P53 signalling pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas Experimentais/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Tiopronina/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Alquilantes/toxicidade , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/prevenção & controle , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/prevenção & controle , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tiopronina/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
13.
Genet Test Mol Biomarkers ; 23(9): 671-680, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31433231

RESUMO

Background: HOX transcript antisense RNA (HOTAIR) and H19 are two long noncoding RNAs that play vital functions in the development of colorectal cancer (CRC). Subjects and Methods: The expression level of HOTAIR and H19 in the sera samples of Egyptian CRC patients along with normal controls was evaluated by quantitative real-time PCR. The possible correlations with the biochemical and clinicopathological characteristics were determined. Results: The expression of HOTAIR and H19 showed 7.55- and 11.38-fold increased levels, respectively, in CRC patients compared to the controls (p < 0.001). Furthermore, HOTAIR expression in CRC patients with regional lymph node metastasis was significantly higher when compared with CRC patients without regional lymph node metastasis (p = 0.034). HOTAIR and H19 expression showed no significant correlation with tumor site or carcinoembryonic antigen concentration. The sensitivity and specificity of HOTAIR and H19 in the detection of CRC cases were calculated as 92.9% and 100%, respectively. Conclusion: HOTAIR and H19 expression levels are upregulated in Egyptian CRC patients, and therefore can be considered noninvasive diagnostic biomarkers with high sensitivity and specificity.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , RNA Longo não Codificante/sangue , Adulto , Idoso , Neoplasias Colorretais/diagnóstico , Egito , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/sangue , Regulação para Cima
14.
J Biochem Mol Toxicol ; 33(6): e22305, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30779474

RESUMO

Hesperidin is a flavanone glycoside that is found in the Citrus species and showed antioxidant, hepatoprotective as well as anticancer activity. This study investigated the effect of hesperidin on the PI3K/Akt pathway as a possible mechanism for its protective effect against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC). Adult Wistar rats were divided into Control group (received drug vehicle); DEN group (received 100 mg/L of DEN solution for 8 weeks), and hesperidin + DEN group (received 200 mg/kg body weight of hesperidin/day orally for 16 weeks + DEN solution as DEN group). Our findings showed that the administration of hesperidin significantly decreased the elevation in liver function enzymes, serum AFP level, and oxidative stress markers. Moreover, hesperidin administration suppressed DEN-induced upregulation of PI3K, Akt, CDK-2 protein expression, and preserved the integrity of the liver tissues from HCC formation. In conclusion, the hepatoprotective activity of hesperidin is mediated via its antioxidation and downregulation of the PI3K/Akt pathway.


Assuntos
Hesperidina/farmacologia , Neoplasias Hepáticas Experimentais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Masculino , Ratos , Ratos Wistar
15.
RSC Adv ; 9(50): 29368-29383, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35528422

RESUMO

Colon cancer is a complex disease that involves numerous genetic alterations that change the normal colonic mucosa into invasive adenocarcinoma. In the current study, the protective effects of inulin (prebiotic), Lactobacillus casei (L. casei, probiotic) and their combination (synbiotic) on 1,2-dimethylhydrazine (DMH)-induced colon cancer in male Swiss mice were evaluated. Animals were divided into: Control group, DMH-treated group, DMH plus inulin, DMH plus L. casei and DMH plus inulin plus L. casei-treated groups. Fecal microbiome analysis, biochemical measurements, histopathological examination of the colon tissues, immunostaining and Western blotting analysis of ß-catenin, GSK3ß and JNK-1 were performed. The prebiotic-, probiotic- and synbiotic-treated groups showed decreased levels of carcinoembryonic antigen and a lower number of aberrant crypt foci compared to the DMH-treated group with the synbiotic group exhibiting a superior effect. Furthermore, all treatments showed a body weight-reducing effect. Administration of inulin, L. casei or their combination increased the expression level of phospho-JNK-1 while they decreased the expression level of ß-catenin and phospho-GSK3ß. Remarkably, L. casei treatment resulted in enrichment of certain beneficial bacterial genera i.e. Akkermansia and Turicibacter. Therefore, administration of L. casei and inulin as a synbiotic combination protects against colon cancer in mice.

16.
Pestic Biochem Physiol ; 152: 29-37, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30497708

RESUMO

Chlorpyrifos (CPF) is an agricultural pesticide and a potential food contaminant, which causes neurotoxicity. Here, we aimed at exploring the link between the repeated exposure to CPF and memory dysfunction in rats and the possible protective effect of kaempferol, a flavonoid with appreciable antioxidant and anti-inflammatory activities. Rats were divided into: Control group (received drug vehicles for 14 days); CPF-treated group (received subcutaneous 18 mg/kg BW of CPF daily for 14 days and CPF + Kaempferol treated group (received the same CPF dose +21 mg/kg BW of Kaempferol intraperitoneally for 14 days. On the 14th day, Y-maze and novel target recognition behavioral tests were employed to evaluate memory deficits. 24 h after the last dose of CPF, animals were sacrificed, and brain tissues were used for the determination of oxidative stress biomarkers and gene expression levels of GSK3ß and Nrf2. The results revealed that CPF-treated rats suffered from severe deterioration of spatial and non-spatial memory functions with low activities of antioxidant enzymes and acetylcholinesterase (AChE). The administration of kaempferol significantly protected against CPF-induced neuronal damage, increased the activities of antioxidant enzymes and AChE and induced a better performance in the behavioral tests. The protective effect of kaempferol was mediated through the inhibition of GSK3ß gene expression and the induction of Nrf2 expression in the brain tissues. In conclusion, the repeated exposure to CPF is associated with oxidative stress and memory deficits in rats. However, kaempferol administration effectively alleviated CPF- induced brain toxicity, possibly through the modulation of GSK3ß-Nrf2 signaling pathway.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Quempferóis/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Clorpirifos , Quempferóis/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
17.
Environ Toxicol Pharmacol ; 59: 17-23, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29500983

RESUMO

The chronic exposure to chlorpyrifos (CPF) pesticide induces several human disorders including hepatotoxicity. Alpha-lipoic acid (ALA) is a natural antioxidant compound found in plants and animals. The present study aimed to investigate the possible protective effect of ALA against CPF-induced hepatotoxicity and the possible underlying molecular mechanism. Thirty-two male Wistar rats were divided into: Normal rats received only vehicle; ALA group received ALA (10 mg/kg, i.p.); CPF group received CPF (18 mg/kg, s.c.) and CPF-ALA group received CPF (18 mg/kg, s.c.) once daily for 14 days. The present results demonstrated that administration of ALA significantly improved liver functions (p < 0.05) and limited the histopathological lesions induced by CPF in liver tissues. Furthermore, ALA decreased hepatic malondialdehyde contents while increased the glutathione peroxidase, catalase, superoxide dismutase and acetylcholinesterase activities. Interestingly, ALA showed significant antiapoptotic effects through downregulation of Bax and Caspase-3 expression levels. In conclusion, ALA possess protective effects against CPF-induced liver injury through attenuation of apoptosis and oxidative stress.


Assuntos
Antioxidantes/farmacologia , Clorpirifos/toxicidade , Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade , Ácido Tióctico/farmacologia , Acetilcolinesterase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/genética
18.
Diabetes Metab Syndr ; 11 Suppl 1: S369-S372, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28283396

RESUMO

INTRODUCTION: Patients with type 2 diabetes mellitus develop many complications including osteopenia, which is associated with high fracture risk. Osteocalcin is a non collagenous protein derived from the osteoblasts. Recently, it was found that osteocalcin enhances the pancreatic beta cell proliferation, insulin secretion and protection against type 2 diabetes. OBJECTIVE: Investigation of the association of serum osteocalcin and other bone turnover markers with blood glucose level and diabetes mellitus duration in type 2 diabetic patients. SUBJECTS AND METHODS: Twenty diagnosed type 2 diabetic patients together with 20 healthy controls were enrolled in this study. Serum osteocalcin, alkaline phosphatase activity and calcium concentrations were measured by commercial ELISA kits. RESULTS: The results showed that type 2 diabetic patients exhibited a significantly lower serum osteocalcin and calcium (p=0.0001 and 0.002 respectively) and a higher alkaline phosphatase (p=0.008) compared to the controls. Multiple linear regression analysis revealed that serum osteocalcin was inversely associated with fasting blood glucose and Diabetes Mellitus duration (ß=- 0.018; p=0.007 and ß=- 0.085; p=0.014 respectively) in Type 2 diabetic patients. In addition, alkaline phosphatase was positively associated (ß=0.828; p=0.015) while serum calcium was negatively associated (ß=- 0.046; p=0.048) with Diabetes Mellitus duration. CONCLUSION: These results refer to the strong association between diabetes and bone turnover markers and call for monitoring of diabetes-associated osteopenia in type 2 diabetic patients.


Assuntos
Glicemia , Doenças Ósseas Metabólicas/etiologia , Diabetes Mellitus Tipo 2/complicações , Adulto , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteocalcina/sangue , Fatores de Tempo
19.
Front Mol Neurosci ; 8: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26283911

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation and aggregation of extracellular amyloid ß (Aß) peptides and intracellular aggregation of hyper-phosphorylated tau protein. Recent evidence indicates that accumulation and aggregation of intracellular amyloid ß peptides may also play a role in disease pathogenesis. This would suggest that intracellular Heat Shock Proteins (HSP) that maintain cellular protein homeostasis might be candidates for disease amelioration. We recently found that DNAJB6, a member of DNAJ family of heat shock proteins, effectively prevented the aggregation of short aggregation-prone peptides containing large poly glutamines (associated with CAG repeat diseases) both in vitro and in cells. Moreover, recent in vitro data showed that DNAJB6 can delay the aggregation of Aß42 peptides. In this study, we investigated the ability of DNAJB6 to prevent the aggregation of extracellular and intracellular Aß peptides using transfection of human embryonic kidney 293 (HEK293) cells with Aß-green fluorescent protein (GFP) fusion construct and performing western blotting and immunofluorescence techniques. We found that DNAJB6 indeed suppresses Aß-GFP aggregation, but not seeded aggregation initiated by extracellular Aß peptides. Unexpectedly and unlike what we found for peptide-mediated aggregation, DNAJB6 required interaction with HSP70 to prevent the aggregation of the Aß-GFP fusion protein and its J-domain was crucial for its anti-aggregation effect. In addition, other DNAJ proteins as well as HSPA1a overexpression also suppressed Aß-GFP aggregation efficiently. Our findings suggest that Aß aggregation differs from poly glutamine (Poly Q) peptide induced aggregation in terms of chaperone handling and sheds doubt on the usage of Aß-GFP fusion construct for studying Aß peptide aggregation in cells.

20.
PLoS One ; 10(5): e0126761, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961584

RESUMO

HSPB5 (also called αB-crystallin) is a ubiquitously expressed small heat shock protein. Mutations in HSPB5 have been found to cause cataract, but are also associated with a subgroup of myofibrillar myopathies. Cells expressing each of these HSPB5 mutants are characterized by the appearance of protein aggregates of primarily the mutant HSPB5. Like several members of the HSPB family, HSPB5 can form both homo-oligomeric and hetero-oligomeric complexes. Previous studies showed that co-expression of HSPB1 and HSPB8 can prevent the aggregation associated with the HSPB5 (R120G) mutant in cardiomyocytes and in transgenic mice. In this study, we systematically compared the effect of co-expression of each of the members of the human HSPB family (HSPB1-10) on the aggregation of three different HSPB5 mutants (R120G, 450 Δ A, 464 Δ CT). Of all members, co-expression of HSPB1, HSPB4 and HSPB5 itself, most effectively prevent the aggregation of these 3 HSPB5 mutants. HSPB6 and HSPB8 were also active but less, whilst the other 5 HSPB members were ineffective. Co-expression of Hsp70 did not reduce the aggregation of the HSPB5 mutants, suggesting that aggregate formation is most likely not related to a toxic gain of function of the mutants per se, but rather related to a loss of chaperone function of the oligomeric complexes containing the HSPB5 mutants (dominant negative effects). Our data suggest that the rescue of aggregation associated with the HSPB5 mutants is due to competitive incorporation of its partners into hetero-oligomers hereby negating the dominant negative effects of the mutant on the functioning of the hetero-oligomer.


Assuntos
Cadeia B de alfa-Cristalina/metabolismo , Animais , Western Blotting , Linhagem Celular , Cristalinas/genética , Cristalinas/metabolismo , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cadeia B de alfa-Cristalina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...