Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(22): 6123-6134, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941961

RESUMO

The wettabilities of nanoscale porous surfaces play important roles in the context of molecular and fluid transport or oil-water separation. The wettability pattern along a nanopore strongly influences fluid distribution throughout the membrane. Mesoporous silica thin films with gradually adjusted wettabilities were fabricated via cocondensation. With consecutive mesoporous layer depositions, double-layer mesoporous silica films with asymmetric or so-called Janus wettability patterns were generated. The effects of these wetting gradients on mass transport, water imbibition, and water vapor condensation were investigated with ellipsometry, cyclic voltammetry (CV), drop friction force instrument (DoFFIs), fluorescence microscopy and interferometry. By increasing the film thickness of the hydrophobic mesoporous silica top layer deposited on a hydrophilic mesoporous silica layer up to 205 nm, molecular transport through both the layers was prevented. However, water was observed to condense onto the bottom layer, and transport occurred for thinner top layers.

2.
Micromachines (Basel) ; 14(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37630030

RESUMO

In the present paper, we investigate how the reductions in shear stresses and pressure losses in microfluidic gaps are directly linked to the local characteristics of cell-free layers (CFLs) at channel Reynolds numbers relevant to ventricular assist device (VAD) applications. For this, detailed studies of local particle distributions of a particulate blood analog fluid are combined with wall shear stress and pressure loss measurements in two complementary set-ups with identical flow geometry, bulk Reynolds numbers and particle Reynolds numbers. For all investigated particle volume fractions of up to 5%, reductions in the stress and pressure loss were measured in comparison to a flow of an equivalent homogeneous fluid (without particles). We could explain this due to the formation of a CFL ranging from 10 to 20 µm. Variations in the channel Reynolds number between Re = 50 and 150 did not lead to measurable changes in CFL heights or stress reductions for all investigated particle volume fractions. These measurements were used to describe the complete chain of how CFL formation leads to a stress reduction, which reduces the apparent viscosity of the suspension and results in the Fåhræus-Lindqvist effect. This chain of causes was investigated for the first time for flows with high Reynolds numbers (Re∼100), representing a flow regime which can be found in the narrow gaps of a VAD.

3.
Soft Matter ; 19(7): 1440-1453, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723248

RESUMO

In the present study, the effect of graphite lubricant additives on the dynamics of a single drop impact onto a heated surface has been investigated in the nucleate boiling and thermal atomization regimes. In the nucleate boiling regime the drop impact is accompanied by the nucleation and expansion of multiple vapor bubbles. The drop residence time at the substrate is determined by the time of its mass loss due to splash and evaporation. At higher temperatures, above the Leidenfrost point, impact may lead to drop rebound. In this experimental and theoretical study the effect of additives on the outcome of drop impact, in particular, the addition of solid graphite particles, is investigated. The residence time of the drop has been measured for various initial drop temperatures and suspension concentrations. The addition of the particles leads to some increase of the residence time, while its dependence on the substrate temperature follows the scaling relation obtained in the theory. Moreover, the presence of the particles in the drop leads to suppression of splash and a significant increase of the drop rebound temperature, which is often associated with the Leidenfrost point. These effects are caused by the properties of the deposited layer, and pinning of the contact line of the entire drop and of each vapor bubble, preventing bubble coalescence and drop rebound. The phenomena are also explained by a significant increase of the liquid viscosity caused by the evaporation of the bulk liquid at high wall temperatures.

4.
Micromachines (Basel) ; 10(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718021

RESUMO

A pressure resistant and optically accessible deterministic lateral displacement (DLD) device was designed and microfabricated from silicon and glass for high-throughput fractionation of particles between 3.0 and 7.0 µm comprising array segments of varying tilt angles with a post size of 5 µm. The design was supported by computational fluid dynamic (CFD) simulations using OpenFOAM software. Simulations indicated a change in the critical particle diameter for fractionation at higher Reynolds numbers. This was experimentally confirmed by microparticle image velocimetry (µPIV) in the DLD device with tracer particles of 0.86 µm. At Reynolds numbers above 8 an asymmetric flow field pattern between posts could be observed. Furthermore, the new DLD device allowed successful fractionation of 2 µm and 5 µm fluorescent polystyrene particles at Re = 0.5-25.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...