Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Physiol Plant ; 176(3): e14338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38740528

RESUMO

Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.


Assuntos
Bacillus subtilis , Fósforo , Raízes de Plantas , Solo , Solanum lycopersicum , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Solo/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Microbiologia do Solo , Solubilidade , Ácidos Indolacéticos/metabolismo , Fertilizantes
2.
New Phytol ; 242(3): 881-902, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433319

RESUMO

In this review, we untangle the physiological key functions of the essential micronutrients and link them to the deficiency responses in plants. Knowledge of these responses at the mechanistic level, and the resulting deficiency symptoms, have improved over the last decade and it appears timely to review recent insights for each of them. A proper understanding of the links between function and symptom is indispensable for an accurate and timely identification of nutritional disorders, thereby informing the design and development of sustainable fertilization strategies. Similarly, improved knowledge of the molecular and physiological functions of micronutrients will be important for breeding programmes aiming to develop new crop genotypes with improved nutrient-use efficiency and resilience in the face of changing soil and climate conditions.


Assuntos
Micronutrientes , Melhoramento Vegetal , Plantas , Solo
3.
Plant Sci ; 339: 111936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042415

RESUMO

Plant growth-promoting microbes (PGPM) can enhance crop yield and health, but knowledge of their mode-of-action is limited. We studied the influence of two Bacillus subtilis strains, the natural isolate ALC_02 and the domesticated 168 Gö, on Arabidopsis and hypothesized that they modify the root architecture by modulating hormone transport or signaling. Both bacteria promoted increase of shoot and root surface area in vitro, but through different root anatomical traits. Mutant plants deficient in auxin transport or signaling responded less to the bacterial strains than the wild-type, and application of the auxin transport inhibitor NPA strongly reduced the influence of the strains. Both bacteria produced auxin and enhanced shoot auxin levels in DR5::GUS reporter plants. Accordingly, most of the beneficial effects of the strains were dependent on functional auxin transport and signaling, while only 168 Gö depended on functional ethylene signaling. As expected, only ALC_02 stimulated plant growth in soil, unlike 168 Gö that was previously reported to have reduced biofilms. Collectively, the results highlight that B. subtilis strains can have strikingly different plant growth-promoting properties, dependent on what experimental setup they are tested in, and the importance of choosing the right PGPM for a desired root phenotype.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Bacillus subtilis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Environ Sci Technol ; 57(51): 21704-21714, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079531

RESUMO

Foliar application of nutrient nanoparticles (NPs) is a promising strategy for improving fertilization efficiency in agriculture. Phloem translocation of NPs from leaves is required for efficient fertilization but is currently considered to be feasible only for NPs smaller than a cell wall pore size exclusion limit of <20 nm. Using mass spectrometry imaging, we provide here the first direct evidence for phloem localization and translocation of a larger (∼70 nm) fertilizer NP comprised of ZnO encapsulated in mesoporous SiO2 (ZnO@MSN) following foliar deposition. The Si content in the phloem tissue of the petiole connected to the dosed leaf was ∼10 times higher than in the xylem tissue, and ∼100 times higher than the phloem tissue of an untreated tomato plant petiole. Direct evidence of NPs in individual phloem cells has only previously been shown for smaller NPs introduced invasively in the plant. Furthermore, we show that uptake and translocation of the NPs can be enhanced by their application on the abaxial (lower) side of the leaf. Applying ZnO@MSN to the abaxial side of a single leaf resulted in a 56% higher uptake of Zn as well as higher translocation to the younger (upper) leaves and to the roots, than dosing the adaxial (top) side of a leaf. The higher abaxial uptake of NPs is in alignment with the higher stomatal density and lower density of mesophyll tissues on that side and has not been demonstrated before.


Assuntos
Nanopartículas , Solanum lycopersicum , Óxido de Zinco , Dióxido de Silício , Floema , Folhas de Planta , Zinco
5.
Front Plant Sci ; 14: 1221436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692441

RESUMO

Magnesium (Mg2+) is essential for photosynthesis in the chloroplasts of land plants and algae. Being the central ion of chlorophyll, cofactor and activator of many photosynthetic enzymes including RuBisCO, magnesium-deficient plants may suffer from leaf chlorosis symptoms and retarded growth. Therefore, the chloroplast Mg2+ concentration is tightly controlled by magnesium transport proteins. Recently, three different transporters from two distinct families have been identified in the chloroplast inner envelope of the model plant Arabidopsis thaliana: MGT10, MGR8, and MGR9. Here, we assess the individual roles of these three proteins in maintaining chloroplast Mg2+ homeostasis and regulating photosynthesis, and if their role is conserved in the model green alga Chlamydomonas reinhardtii. Phylogenetic analysis and heterologous expression revealed that the CorC-like MGR8 and MGR9 transport Mg2+ by a different mechanism than the CorA-like MGT10. MGR8 and MGT10 genes are highest expressed in leaves, indicating a function in chloroplast Mg2+ transport. MGR9 is important for chloroplast function and plant adaptation in conditions of deficiency or excess of Mg2+. Transmission electron microscopy indicated that MGT10 plays a differential role in thylakoid stacking than MGR8 and MGR9. Furthermore, we report that MGR8, MGR9, and MGT10 are involved in building up the pH gradient across the thylakoid membrane and activating photoprotection in conditions of excess light, however the mechanism has not been resolved yet. While there are no chloroplast MGR-like transporters in Chlamydomonas, we show that MRS4 is a homolog of MGT10, that is required for photosynthesis and cell growth. Taken together, our findings reveal that the studied Mg2+ transporters play essential but differential roles in maintaining chloroplast Mg2+ homeostasis.

6.
Front Plant Sci ; 14: 1100318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152149

RESUMO

Phosphorus (P) deficiency is a global issue which can severely impact the yield of crops, including the P demanding and important food crop potato. Diagnosis of P status directly in the field can be used to adapt P fertilization strategies to the needs of the evolving crop during the growing season and is often estimated by analyzing P concentrations in leaf tissue. In this study, we investigate how diagnosis of P status in field grown potato plants is affected by leaf position and time of measurement in a randomized block experiment. The concentrations of many essential plant nutrients are highly dynamic, and large differences in nutrient concentrations were found in potato leaves depending on leaf age and time of sampling. During tuber initiation, P concentrations decreased in a steep gradient from the youngest leaves (0.8%) towards the oldest leaves (0.2%). The P concentrations in the youngest fully expanded leaf decreased by 25-33% within just 7 days, due to a high remobilization of P from source to sink tissue during crop development. 40 days later P concentrations in all leaves were near or below the established critical P concentration of 0.22%. The P concentration in leaf tissue thus depends on sampling time and leaf position on the plant, which in a practical setting might prevent a meaningful interpretation in terms of fertilizer recommendation. The chlorophyll a fluorescence parameter "P-predict", derived from the fluorescence transients, is an alternative to the classical chemical analysis of nutrient concentrations in leaf tissue. P-predict values serve as a proxy for the bioavailable P pool in the leaf and can be measured directly in the field using handheld technology. However, in conditions of high solar irradiation, the P-predict values of the most light-exposed leaf positions, i.e. the younger leaves, were found to be severely impacted by photoinhibition, preventing accurate characterization of the P status in potatoes. Shading the plants can reverse or prevent photoinhibition and restore the diagnostic capabilities of the P-predict approach.

7.
Trends Plant Sci ; 28(5): 544-551, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858842

RESUMO

Future crops need to be sustainable in the face of climate change. Modern barley varieties have been bred for high productivity and quality; however, they have suffered considerable genetic erosion, losing crucial genetic diversity. This renders modern cultivars vulnerable to climate change and stressful environments. We highlight the potential to tailor crops to a specific environment by utilising diversity inherent in an adapted landrace population. Tapping into natural biodiversity, while incorporating information about local environmental and climatic conditions, allows targeting of key traits and genotypes, enabling crop production in marginal soils. We outline future directions for the utilisation of genetic resources maintained in landrace collections to support sustainable agriculture through germplasm development via the use of genomics technologies and big data.


Assuntos
Hordeum , Solo , Hordeum/genética , Melhoramento Vegetal , Agricultura , Adaptação Fisiológica/genética , Produtos Agrícolas/genética
8.
Trends Plant Sci ; 28(1): 90-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36153275

RESUMO

An urgent challenge within agriculture is to improve fertilizer efficiency in order to reduce the environmental footprint associated with an increased production of crops on existing farmland. Standard soil fertilization strategies are often not very efficient due to immobilization in the soil and losses of nutrients by leaching or volatilization. Foliar fertilization offers an attractive supplementary strategy as it bypasses the adverse soil processes, but implementation is often hampered by a poor penetration through leaf barriers, leaf damage, and a limited ability of nutrients to translocate. Recent advances within bionanotechnology offer a range of emerging possibilities to overcome these challenges. Here we review how nanoparticles can be tailored with smart properties to interact with plant tissue for a more efficient delivery of nutrients.


Assuntos
Agricultura , Nanopartículas , Solo , Nanotecnologia , Fertilização , Fertilizantes/análise , Nitrogênio
9.
Physiol Plant ; 174(4): e13761, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36004733

RESUMO

Foliar fertilization delivers essential nutrients directly to plant tissues, reducing excessive soil fertilizer applications that can lead to eutrophication following nutrient leaching. Foliar nutrient absorption is a dynamic process affected by leaf surface structure and composition, plant nutrient status, and ion physicochemical properties. We applied multiple methods to study the foliar absorption behaviors of manganese (Mn) and phosphorus (P) in nutrient-deficient spring barley (Hordeum vulgare) at two growth stages. Nutrient-specific chlorophyll a fluorescence assays were used to visualize leaf nutrient status, while laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualize foliar absorption pathways for P and Mn ions. Rapid Mn absorption was facilitated by a relatively thin cuticle with a low abundance of waxes and a higher stomatal density in Mn-deficient plants. Following absorption, Mn accumulated in epidermal cells and in the photosynthetically active mesophyll, enabling a fast (6 h) restoration of Mn-dependent photosynthetic processes. Conversely, P-deficient plants developed thicker cuticles and epidermal cell walls, which reduced the penetration of P across the leaf surface. Foliar-applied P accumulated in trichomes and fiber cells above leaf veins without reaching the mesophyll and, as a consequence, no restoration of P-dependent photosynthetic processes was observed. This study reveals new links between leaf surface morphology, foliar-applied ion absorption pathways, and the restoration of affected physiological processes in nutrient-deficient leaves. Understanding that ions may have different absorption pathways across the leaf surface is critical for the future development of efficient fertilization strategies for crops in nutrient-limited soils.


Assuntos
Hordeum , Manganês , Fósforo , Folhas de Planta , Clorofila A/análise , Hordeum/metabolismo , Íons/metabolismo , Manganês/metabolismo , Nutrientes/análise , Fósforo/metabolismo , Folhas de Planta/metabolismo , Solo
10.
Lasers Surg Med ; 54(1): 170-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859463

RESUMO

BACKGROUND AND OBJECTIVES: Current cancer immunotherapeutic treatment with PD-1 inhibitors is administered systemically. However, a local treatment strategy may be advantageous as it could provide targeted drug delivery as well as attenuate side effects seen with systemic treatments. For keratinocyte cancers, where surgical excision is not always applicable, an alternate local treatment approach would be beneficial. This study aims to examine cutaneous pharmacokinetics and biodistribution of the PD-1 inhibitor nivolumab, locally delivered either by ablative fractional laser (AFL)-assisted passive diffusion or active intradermal injection, in vivo. MATERIALS AND METHODS: In vivo pig skin was either exposed to CO2 AFL (80 mJ/mb by two stacked pulses of 40 mJ/mb) at 5% or 15% density followed by topical application of nivolumab (1 mg/ml, 100 µl/10 × 10 mm) or intradermally injected with nivolumab (1 mg/ml, 100 µl). Cutaneous nivolumab delivery was evaluated at different timepoints (0, 1, 2, 4 hours and 2 days) at two tissue depths (100-800 and 900-1600 µm) by ELISA. Visualization of cutaneous biodistribution was shown in vertical tissue sections using HiLyte FluorTM 488 SE labeled nivolumab for fluorescence microscopy whereas nivolumab was DOTA-tagged with Dysprosium before the laser ablation-inductively coupled plasma-mass spectrometry analysis (LA-ICP-MS). RESULTS: Our in vivo study revealed different pharmacokinetic and biodistribution patterns for the AFL- and injection techniques. A superficial horizontal band-like uptake of nivolumab was provided with AFL-assisted passive diffusion whereas a deep focal deposition was seen with active intradermal injection, compared with controls showing remnant deposition on the skin surface. AFL-assisted nivolumab uptake in upper dermis peaked after 4 hours (p < 0.01). The cutaneous concentration of nivolumab achieved by intradermal injection was markedly higher than with AFL, the highest deposition with intradermal injection was detected at time 0 hours in both upper and deep dermis (p < 0.01) and decreased throughout the study period, although the concentration remained higher compared with saline control injections at all time points (0 hours -2 d) (p < 0.01). CONCLUSION: Local cutaneous delivery of nivolumab with either AFL or intradermal injection revealed two different pharmacokinetic and biodistribution patterns. Passive AFL-assisted diffusion of nivolumab resulted in enhanced uptake after 4 hours, while intradermal actively injected nivolumab showed immediate enhanced cutaneous deposition with retention up to 2 days after injection. The two local delivery techniques show potential for development of individualized treatment strategies depending on the clinical tumor appearance.


Assuntos
Inibidores de Checkpoint Imunológico , Lasers de Gás , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos , Injeções Intradérmicas , Pele/metabolismo , Absorção Cutânea , Suínos , Distribuição Tecidual
11.
Lasers Surg Med ; 53(1): 119-128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32960987

RESUMO

BACKGROUND AND OBJECTIVES: Rising incidences of basal cell carcinoma (BCC) have increased the need for effective topical therapies. By enhancing cutaneous uptake of the chemotherapeutic agents, cisplatin and 5-fluorouracil (5-FU), laser-assisted delivery may provide a new combination treatment for BCC. Accordingly, this study aimed to evaluate tumor response, safety, and drug biodistribution in tumors and blood after topical laser-assisted 5-FU + CIS treatment in BCC patients. STUDY DESIGN/MATERIALS AND METHODS: This open-label, proof-of-concept trial investigated laser-assisted combination cisplatin + 5-FU treatment in 20 patients with histologically verified, low-risk superficial or nodular BCCs on the face (<20 mm) or trunk/extremities (<50 mm). After tumor demarcation guided by optical coherence tomography (OCT), BCCs were exposed to ablative fractional CO2 laser followed by 60 minutes topical cisplatin solution and 7-day exposure to 5% 5-FU cream under occlusion. After 30 days, treatment was repeated if any tumor residual was identified. Tumor response at day 30 and month 3 was assessed clinically as well as by OCT, reflectance confocal microscopy, and ultrasound, supplemented by histological verification at 3 months. Local skin reactions (LSRs) and side effects were evaluated on days 1, 3-5, 14, 30, and month 3. Drug detection in tumors and blood was performed in a subset of patients 1- and 24 hours after treatment. RESULTS: Nineteen patients completed the trial, with 32% (6/19) receiving a single treatment and 68% (13/19) treated twice. At 3 months, clinical clearance was seen in 18/19 patients with a corresponding 94% (17/18) achieving histological clearance. Baseline tumor thickness and subtype did not influence treatment number or clearance rate (P ≥ 0.61). LSRs were well-tolerated and consisted of erythema, edema, and erosion, followed by crusting by day 14. Erythema declined gradually by month 3, with 94% of patients and 79% of physicians rating cosmesis as "good" or "excellent." Scarring or hyperpigmentation was noted in 50% and 56%, respectively, while pain and infection were not observed during the follow-up period. Although chemotherapy uptake was visualized extending to deep skin layers, no systemic exposure to cisplatin or 5-FU was detected in patient blood. CONCLUSION: Laser-assisted cisplatin + 5-FU shows potential as an effective and tolerable treatment option for low-risk BCC, particularly in instances where self-application is not possible or where in-office, non-surgical therapy is preferred. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Assuntos
Carcinoma Basocelular , Lasers de Gás , Neoplasias Cutâneas , Carcinoma Basocelular/diagnóstico por imagem , Carcinoma Basocelular/tratamento farmacológico , Cisplatino , Fluoruracila , Humanos , Estudo de Prova de Conceito , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/tratamento farmacológico , Distribuição Tecidual
12.
Environ Int ; 146: 106245, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161202

RESUMO

We use soils to provide 98.8% of our food, but we must ensure that the pressure we place on soils to provide this food in the short-term does not inadvertently push the Earth into a less hospitable state in the long-term. Using the planetary boundaries framework, we show that soils are a master variable for regulating critical Earth-system processes. Indeed, of the seven Earth-systems that have been quantified, soils play a critical and substantial role in changing the Earth-systems in at least two, either directly or indirectly, as well as smaller contributions for a further three. For the biogeochemical flows Earth-system process, soils contribute 66% of the total anthropogenic change for nitrogen and 38% for phosphorus, whilst for the land-system change Earth-system process, soils indirectly contribute 80% of global anthropogenic change. Furthermore, perturbations of soils contribute directly to 21% of climate change, 25% to ocean acidification, and 25% to stratospheric ozone depletion. We argue that urgent interventions are required to greatly improve soil management, especially for those Earth-system processes where the planetary boundary has already been exceeded and where soils make an important contribution, with this being for biogeochemical flows (both nitrogen and phosphorus), for climate change, and for land-system change. Of particular importance, it is noted that the highly inefficient use of N fertilizers results in release of excess N into the broader environment, contributes to climate change, and results in release of ozone-depleting substances. Furthermore, the use of soils for agricultural production results not only in land-system change, but also in the loss (mineralization) of organic matter with a concomitant release of CO2 contributing to both climate change and ocean acidification. Thus, there is a need to markedly improve the efficiency of fertilizer applications and to intensify usage of our most fertile soils in order to allow the restoration of degraded soils and limit further areal expansion of agriculture. Understanding, and acting upon, the role of soils is critical in ensuring that planetary boundaries are not transgressed, with no other single variable playing such a strategic role across all of the planetary boundaries.


Assuntos
Água do Mar , Solo , Agricultura , Fertilizantes , Concentração de Íons de Hidrogênio
13.
Lasers Surg Med ; 53(1): 154-161, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997833

RESUMO

BACKGROUND AND OBJECTIVES: PD-L1 is a tumor ligand that binds to the PD-1 receptor on immune cells, thereby inhibiting the antitumor immune response. The antibody nivolumab is a PD-1 inhibitor, Food and Drug Administration approved for systemic treatment of several aggressive cancer types. Topically applied nivolumab may hold potential as a future strategy to treat keratinocyte cancer, but its molecular properties preclude unassisted topical uptake. The aim of this study was to investigate uptake and biodistribution of topically delivered nivolumab, assisted by two physical enhancement techniques with different delivery kinetics; ablative fractional laser (AFL) and electronically controlled pneumatic injection (EPI). STUDY DESIGN/MATERIALS AND METHODS: In vitro porcine skin was exposed to CO2 AFL (20 mJ/mb, 5% density), followed by passive diffusion of nivolumab in a Franz cell (1 mg/ml, 18 hours, n = 6) or treated with EPI (4 bar) for immediate delivery of nivolumab (1 mg/ml, 10 minutes, n = 6). The resulting nivolumab skin concentrations were quantified by enzyme-linked immunosorbent assay (ELISA) at three skin depths (100, 500, and 1500 µm), comparing the uptake from assisted delivery with intact skin. Biodistribution of nivolumab in the skin for all interventions was visualized by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and fluorescence microscopy. RESULTS: Delivery of nivolumab by AFL-assisted passive diffusion and immediate EPI both resulted in significantly enhanced uptake of nivolumab in all skin depths compared with intact skin (P < 0.05). With AFL, nivolumab concentrations reached 86.3 µg/cm3 (100 µm), 105.8 µg/cm3 (500 µm), and 19.3 µg/cm3 (1500 µm), corresponding to 2-10% of the applied concentration, with the highest deposition in the mid dermis. Immediate EPI delivered 429.4 µg/cm3 (100 µm), 584.9 µg/cm3 (500 µm), and 295.9 µg/cm3 (1500 µm) into the skin, corresponding to 29-58% of the applied nivolumab concentration. From qualitative visualization of the biodistribution, it appeared that nivolumab distributed in a horizontal and continuous homogenous band in the upper and mid dermis through AFL-exposed skin, whereas EPI-delivery showed a deep focal deposition extending into the deep dermis. CONCLUSIONS: AFL-assisted passive diffusion and immediate EPI-assisted delivery show the potential to deliver therapeutic antibodies locally. Future in vivo and pharmacokinetic studies would reveal the full potential for topical antibody delivery by energy-based devices. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Assuntos
Lasers de Gás , Nivolumabe , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos , Nivolumabe/metabolismo , Pele/metabolismo , Suínos , Distribuição Tecidual
14.
New Phytol ; 229(5): 2446-2469, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33175410

RESUMO

The visual deficiency symptoms developing on plants constitute the ultimate manifestation of suboptimal nutrient supply. In classical plant nutrition, these symptoms have been extensively used as a tool to characterise the nutritional status of plants and to optimise fertilisation. Here we expand this concept by bridging the typical deficiency symptoms for each of the six essential macronutrients to their molecular and physiological functionalities in higher plants. We focus on the most recent insights obtained during the last decade, which now allow us to better understand the links between symptom and function for each element. A deep understanding of the mechanisms underlying the visual deficiency symptoms enables us to thoroughly understand how plants react to nutrient limitations and how these disturbances may affect the productivity and biodiversity of terrestrial ecosystems. A proper interpretation of visual deficiency symptoms will support the potential for sustainable crop intensification through the development of new technologies that facilitate automatised management practices based on imaging technologies, remote sensing and in-field sensors, thereby providing the basis for timely application of nutrients via smart and more efficient fertilisation.


Assuntos
Ecossistema , Plantas , Minerais , Nitrogênio , Nutrientes
15.
J Agric Food Chem ; 68(44): 12229-12240, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33070613

RESUMO

Breeding and engineering of biofortified crops will benefit from a better understanding of bottlenecks controlling micronutrient loading within the seeds. However, few studies have addressed the changes in micronutrient concentrations, localization, and speciation occurring over time. Therefore, we studied spatial patterns of zinc and iron accumulation during grain development in two barley lines with contrasting grain zinc concentrations. Microparticle-induced-X-ray emission and laser ablation-inductively coupled plasma mass spectrometry were used to determine tissue-specific accumulation of zinc, iron, phosphorus, and sulfur. Differences in zinc accumulation between the lines were most evident in the endosperm and aleurone. A gradual decrease in zinc concentrations from the aleurone to the underlying endosperm was observed, while iron and phosphorus concentrations decreased sharply. Iron co-localized with phosphorus in the aleurone, whereas zinc co-localized with sulfur in the sub-aleurone. We hypothesize that differences in grain zinc are largely explained by the endosperm storage capacity. Engineering attempts should be targeted accordingly.


Assuntos
Hordeum/metabolismo , Ferro/metabolismo , Sementes/química , Zinco/metabolismo , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Endosperma/química , Endosperma/metabolismo , Hordeum/química , Hordeum/crescimento & desenvolvimento , Ferro/análise , Micronutrientes/análise , Micronutrientes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Zinco/análise
16.
J Exp Bot ; 71(19): 6116-6127, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32737981

RESUMO

Manganese (Mn) plays an important role in the oxygen-evolving complex, where energy from light absorption is used for water splitting. Although changes in light intensity and Mn status can interfere with the functionality of the photosynthetic apparatus, the interaction between these two factors and the underlying mechanisms remain largely unknown. Here, maize seedlings were grown hydroponically and exposed to two different light intensities under Mn-sufficient or -deficient conditions. No visual Mn deficiency symptoms appeared even though the foliar Mn concentration in the Mn-deficient treatments was reduced to 2 µg g-1. However, the maximum quantum yield efficiency of PSII and the net photosynthetic rate declined significantly, indicating latent Mn deficiency. The reduction in photosynthetic performance by Mn depletion was further aggravated when plants were exposed to high light intensity. Integrated transcriptomic and proteomic analyses showed that a considerable number of genes encoding proteins in the photosynthetic apparatus were only suppressed by a combination of Mn deficiency and high light, thus indicating interactions between changes in Mn nutritional status and light intensity. We conclude that high light intensity aggravates latent Mn deficiency in maize by interfering with the abundance of PSII proteins.


Assuntos
Manganês , Zea mays , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica , Zea mays/genética , Zea mays/metabolismo
17.
Plant Physiol ; 183(4): 1472-1483, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32540871

RESUMO

Global demand for phosphorus (P) requires new agronomic practices to address sustainability challenges while increasing food production. Foliar P fertilization could increase P use efficiency; however, leaf entry pathways for inorganic phosphate ion (Pi) uptake remain unknown, and it is unclear whether foliar P applications can meet plant nutrient demands. We developed two techniques to trace foliar P uptake in P-deficient spring barley (Hordeum vulgare) and to monitor the effectiveness of the treatment on restoring P functionality. First, a whole-leaf P status assay was developed using an IMAGING PAM system; nonphotochemical quenching was a proxy for P status, as P-deficient barley developed nonphotochemical quenching at a faster rate than P-sufficient barley. The assay showed restoration of P functionality in P-deficient plants 24 h after foliar P application. Treated leaves reverted to P deficiency after 7 d, while newly emerging leaves exhibited partial restoration compared with untreated P-deficient plants, indicating Pi remobilization. Second, vanadate was tested as a possible foliar Pi tracer using high-resolution laser ablation-inductively coupled plasma-mass spectrometry elemental mapping. The strong colocalization of vanadium and P signal intensities demonstrated that vanadate was a sensitive and useful Pi tracer. Vanadate and Pi uptake predominantly occurred via fiber cells located above leaf veins, with pathways to the vascular tissue possibly facilitated by the bundle sheath extension. Minor indications of stomatal and cuticular Pi uptake were also observed. These techniques provided an approach to understand how Pi crosses the leaf surface and assimilates to meet plant nutrient demands.


Assuntos
Hordeum/metabolismo , Folhas de Planta/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo
18.
Plant Methods ; 16: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165911

RESUMO

BACKGROUND: To understand processes regulating nutrient homeostasis at the single-cell level there is a need for new methods that allow multi-element profiling of biological samples ultimately only available as isolated tissues or cells, typically in nanogram-sized samples. Apart from tissue isolation, the main challenges for such analyses are to obtain a complete and homogeneous digestion of each sample, to keep sample dilution at a minimum and to produce accurate and reproducible results. In particular, determining the weight of small samples becomes increasingly challenging when the sample amount decreases. RESULTS: We developed a novel method for sampling, digestion and multi-element analysis of nanogram-sized plant tissue, along with strategies to quantify element concentrations in samples too small to be weighed. The method is based on tissue isolation by laser capture microdissection (LCM), followed by pressurized micro-digestion and ICP-MS analysis, the latter utilizing a stable µL min-1 sample aspiration system. The method allowed for isolation, digestion and analysis of micro-dissected tissues from barley roots with an estimated sample weight of only ~ 400 ng. In the collection and analysis steps, a number of contamination sources were identified. Following elimination of these sources, several elements, including magnesium (Mg), phosphorus (P), potassium (K) and manganese (Mn), could be quantified. By measuring the exact area and thickness of each of the micro-dissected tissues, their volume was calculated. Combined with an estimated sample density, the sample weights could subsequently be calculated and the fact that these samples were too small to be weighed could thereby be circumvented. The method was further documented by analysis of Arabidopsis seeds (~ 20 µg) as well as tissue fractions of such seeds (~ 10 µg). CONCLUSIONS: The presented method enables collection and multi-element analysis of small-sized biological samples, ranging down to the nanogram level. As such, the method paves the road for single cell and tissue-specific quantitative ionomics, which allow for future transcriptional, proteomic and metabolomic data to be correlated with ionomic profiles. Such analyses will deepen our understanding of how the elemental composition of plants is regulated, e.g. by transporter proteins and physical barriers (i.e. the Casparian strip and suberin lamellae in the root endodermis).

19.
Plant Physiol ; 182(4): 1869-1882, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31974126

RESUMO

Understanding the distribution of elements in plants is important for researchers across a broad range of fields, including plant molecular biology, agronomy, plant physiology, plant nutrition, and ionomics. However, it is often challenging to evaluate the applicability of the wide range of techniques available, with each having its own strengths and limitations. Here, we compare scanning/transmission electron microscopy-based energy-dispersive x-ray spectroscopy, x-ray fluorescence microscopy, particle-induced x-ray emission, laser ablation inductively coupled plasma-mass spectrometry, nanoscale secondary ion mass spectroscopy, autoradiography, and confocal microscopy with fluorophores. For these various techniques, we compare their accessibility, their ability to analyze hydrated tissues (without sample preparation) and suitability for in vivo analyses, as well as examining their most important analytical merits, such as resolution, sensitivity, depth of analysis, and the range of elements that can be analyzed. We hope that this information will assist other researchers to select, access, and evaluate the approach that is most useful in their particular research program or application.


Assuntos
Plantas/química , Espectrometria de Massas , Microscopia Confocal , Microscopia Eletrônica , Espectrometria por Raios X
20.
Plants (Basel) ; 8(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569811

RESUMO

Manganese (Mn) is an essential micronutrient with many functional roles in plant metabolism. Manganese acts as an activator and co-factor of hundreds of metalloenzymes in plants. Because of its ability to readily change oxidation state in biological systems, Mn plays and important role in a broad range of enzyme-catalyzed reactions, including redox reactions, phosphorylation, decarboxylation, and hydrolysis. Manganese(II) is the prevalent oxidation state of Mn in plants and exhibits fast ligand exchange kinetics, which means that Mn can often be substituted by other metal ions, such as Mg(II), which has similar ion characteristics and requirements to the ligand environment of the metal binding sites. Knowledge of the molecular mechanisms catalyzed by Mn and regulation of Mn insertion into the active site of Mn-dependent enzymes, in the presence of other metals, is gradually evolving. This review presents an overview of the chemistry and biochemistry of Mn in plants, including an updated list of known Mn-dependent enzymes, together with enzymes where Mn has been shown to exchange with other metal ions. Furthermore, the current knowledge of the structure and functional role of the three most well characterized Mn-containing metalloenzymes in plants; the oxygen evolving complex of photosystem II, Mn superoxide dismutase, and oxalate oxidase is summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...