Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611800

RESUMO

4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.


Assuntos
Álcoois , Chlamydia trachomatis , Inibidores de Proteases , Inibidores de Proteases/farmacologia , Terapia Enzimática , Isocumarinas , Serina Endopeptidases , Serina Proteases
2.
J Bacteriol ; 206(4): e0037123, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38445896

RESUMO

Chlamydia trachomatis is an intracellular bacterial pathogen that undergoes a biphasic developmental cycle, consisting of intracellular reticulate bodies and extracellular infectious elementary bodies. A conserved bacterial protease, HtrA, was shown previously to be essential for Chlamydia during the reticulate body phase, using a novel inhibitor (JO146). In this study, isolates selected for the survival of JO146 treatment were found to have polymorphisms in the acyl-acyl carrier protein synthetase gene (aasC). AasC encodes the enzyme responsible for activating fatty acids from the host cell or synthesis to be incorporated into lipid bilayers. The isolates had distinct lipidomes with varied fatty acid compositions. A reduction in the lipid compositions that HtrA prefers to bind to was detected, yet HtrA and MOMP (a key outer membrane protein) were present at higher levels in the variants. Reduced progeny production and an earlier cellular exit were observed. Transcriptome analysis identified that multiple genes were downregulated in the variants especially stress and DNA processing factors. Here, we have shown that the fatty acid composition of chlamydial lipids, HtrA, and membrane proteins interplay and, when disrupted, impact chlamydial stress response that could trigger early cellular exit. IMPORTANCE: Chlamydia trachomatis is an important obligate intracellular pathogen that has a unique biphasic developmental cycle. HtrA is an essential stress or virulence protease in many bacteria, with many different functions. Previously, we demonstrated that HtrA is critical for Chlamydia using a novel inhibitor. In the present study, we characterized genetic variants of Chlamydia trachomatis with reduced susceptibility to the HtrA inhibitor. The variants were changed in membrane fatty acid composition, outer membrane proteins, and transcription of stress genes. Earlier and more synchronous cellular exit was observed. Combined, this links stress response to fatty acids, membrane proteins, and HtrA interplay with the outcome of disrupted timing of chlamydial cellular exit.


Assuntos
Chlamydia trachomatis , Ácidos Graxos , Chlamydia trachomatis/genética , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética
3.
Scand J Immunol ; 99(1): e13331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38441219

RESUMO

Chlamydia trachomatis infections are an important sexually transmitted infection that can lead to inflammation, scarring and hydrosalpinx/infertility. However, infections are commonly clinically asymptomatic and do not receive treatment. The underlying cause of asymptomatic immunopathology remains unknown. Here, we demonstrate that IgG produced during male infection enhanced the incidence of immunopathology and infertility in females. Human endocervical cells expressing the neonatal Fc Receptor (FcRn) increased translocation of human IgG-opsonized C. trachomatis. Using total IgG purified from infected male mice, we opsonized C. muridarum and then infected female mice, mimicking sexual transmission. Following infection, IgG-opsonized Chlamydia was found to transcytose the epithelial barrier in the uterus, where it was phagocytosed by antigen-presenting cells (APCs) and trafficked to the draining lymph nodes. APCs then expanded both CD4+ and CD8+ T cell populations and caused significantly more infertility in female mice infected with non-opsonized Chlamydia. Enhanced phagocytosis of IgG-opsonized Chlamydia significantly increased pro-inflammatory signalling and T cell proliferation. As IgG is transcytosed by FcRn, we utilized FcRn-/- mice and observed that shedding kinetics of Chlamydia were only affected in FcRn-/- mice infected with IgG-opsonized Chlamydia. Depletion of CD8+ T cells in FcRn-/- mice lead to a significant reduction in the incidence of infertility. Taken together, these data demonstrate that IgG seroconversion during male infection can amplify female immunopathology, dependent on FcRn transcytosis, APC differentiation and enhanced CD8 T cell responses.


Assuntos
Chlamydia , Infertilidade , Humanos , Feminino , Masculino , Animais , Camundongos , Linfócitos T CD8-Positivos , Imunoglobulina G , Genitália
4.
Front Cell Infect Microbiol ; 13: 1281823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920447

RESUMO

Chlamydia trachomatis is a strict intracellular human pathogen. It is the main bacterial cause of sexually transmitted infections and the etiologic agent of trachoma, which is the leading cause of preventable blindness. Despite over 100 years since C. trachomatis was first identified, there is still no vaccine. However in recent years, the advancement of genetic manipulation approaches for C. trachomatis has increased our understanding of the molecular pathogenesis of C. trachomatis and progress towards a vaccine. In this mini-review, we aimed to outline the factors related to the developmental cycle phase and specific pathogenesis activity of C. trachomatis in order to focus priorities for future genetic approaches. We highlight the factors known to be critical for developmental cycle stages, gene expression regulatory factors, type III secretion system and their effectors, and individual virulence factors with known impacts.


Assuntos
Infecções por Chlamydia , Tracoma , Humanos , Chlamydia trachomatis , Infecções por Chlamydia/microbiologia
6.
Front Cell Infect Microbiol ; 13: 1358553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249301

RESUMO

[This corrects the article DOI: 10.3389/fcimb.2023.1281823.].

7.
Front Public Health ; 10: 1012835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299763

RESUMO

Chlamydia trachomatis, the most common bacterial sexually transmitted infection worldwide, is responsible for considerable health burden due to its significant sequelae. There are growing concerns about chlamydial treatment and management due to widely documented increasing burden of repeat infections. In the current study, a cohort study design of 305 women with urogenital chlamydial infections demonstrated that 11.8% of women experienced repeat infections after treatment with azithromycin. The chlamydial DNA load measured by quantitative PCR was higher in women who experienced a repeat infection (p = 0.0097) and repeat infection was associated with sexual contact. There was no genomic or phenotypic evidence of azithromycin resistance within the chlamydial isolates. During repeat infection, or repeat positive tests during follow up, vaginal chlamydial gene expression (ompA, euo, omcB, htrA, trpAB) was markedly higher compared to baseline, and two of the selected immune genes analyzed had significantly lower expression at the time of repeat infection. Overall, there are two implications of these results. The results could be generalized to all recent infections, or repeat positive events, and indicate that chlamydial infections are have higher transcriptional activity of select genes early in the infection in women. Alternatively, after azithromycin treatment, repeat infections of Chlamydia may be more transcriptionally active at certain genes, and there may be post-treatment immunological alterations that interplay into repeat exposures establishing an active infection. The potential that recent infections may involve a higher level of activity from the organism may have implications for management by more regular testing of the most at risk women to reduce the risk of sequelae.


Assuntos
Azitromicina , Infecções por Chlamydia , Feminino , Humanos , Azitromicina/uso terapêutico , Estudos de Coortes , Chlamydia trachomatis/genética
8.
PLoS One ; 17(9): e0274666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36121793

RESUMO

INTRODUCTION: There is currently no test for pelvic inflammatory disease (PID) that is non-invasive and sufficiently sensitive and specific. Clinicians must therefore diagnose PID clinically, ruling out medical emergencies and conducting pelvic examinations where possible. While guidelines state that clinicians should be prepared to over-diagnose PID, it remains an under-diagnosed condition, with severe reproductive health impacts when left untreated. This research is the first to consider the perspectives of end-users on the development of a diagnostic test for PID. METHODS: Semi-structured live video feed online (Zoom) interviews were conducted with 11 clinicians and nine women (aged 18-30 years) in Australia to understand how a diagnostic test might be used, and what characteristics a test would need for it to be acceptable to clinicians and young women. Participants were recruited via researcher and university student networks. Reflexive thematic analysis was used to identify key themes relating to the acceptability and characteristics of a diagnostic test for PID. RESULTS: Seven general practitioners, four clinicians working in sexual health clinics, and nine young women (aged 21-27 years) were interviewed. Clinicians were aged between 31-58 years and were predominantly female. Clinicians recognised that the development of an accurate test to diagnose PID would be valuable to themselves and other clinicians, particularly those who lack experience diagnosing PID, and those working in certain settings, including emergency departments. They discussed how they might use a test to enhance their clinical assessment but highlighted that it would not replace clinical judgement. Clinicians also considered how a test would impact the patient experience and time to treatment, emphasising that it should be minimally invasive and have a quick turnaround time. Young women said a test would be acceptable if endorsed by a trustworthy clinician. CONCLUSIONS: PID remains a challenging diagnosis. Development of a minimally invasive and sufficiently accurate diagnostic test would be acceptable to young women and benefit some clinicians, although no test would completely replace an experienced clinician's judgement in making a PID diagnosis.


Assuntos
Doença Inflamatória Pélvica , Adulto , Austrália , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Patologia Molecular , Doença Inflamatória Pélvica/diagnóstico , Atenção Primária à Saúde , Pesquisa Qualitativa
9.
Eur J Med Chem ; 230: 114064, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007862

RESUMO

High temperature requirement A (HtrA) serine proteases have emerged as a novel class of antibacterial target, which are crucial in protein quality control and are involved in the pathogenesis of a wide array of bacterial infections. Previously, we demonstrated that HtrA in Chlamydia is essential for bacterial survival, replication and virulence. Here, we report a new series of proline (P2)-modified inhibitors of Chlamydia trachomatis HtrA (CtHtrA) developed by proline ring expansion and Cγ-substitutions. The structure-based drug optimization process was guided by molecular modelling and in vitro pharmacological evaluation of inhibitory potency, selectivity and cytotoxicity. Compound 25 from the first-generation 4-substituted proline analogues increased antiCtHtrA potency and selectivity over human neutrophil elastase (HNE) by approximately 6- and 12-fold, respectively, relative to the peptidic lead compound 1. Based on this compound, second-generation substituted proline residues containing 1,2,3-triazole moieties were synthesized by regioselective azide-alkyne click chemistry. Compound 49 demonstrated significantly improved antichlamydial activity in whole cell assays, diminishing the bacterial infectious progeny below the detection limit at the lowest dose tested. Compound 49 resulted in approximately 9- and 22-fold improvement in the inhibitory potency and selectivity relative to 1, respectively. To date, compound 49 is the most potent HtrA inhibitor developed against Chlamydia spp.


Assuntos
Prolina , Serina Proteases , Antibacterianos/farmacologia , Chlamydia trachomatis , Humanos , Peptídeos , Prolina/farmacologia
10.
Eur J Med Chem ; 224: 113692, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265463

RESUMO

The obligate intracellular bacterium Chlamydia trachomatis (C. trachomatis) is responsible for the most common bacterial sexually transmitted infection and is the leading cause of preventable blindness, representing a major global health burden. While C. trachomatis infection is currently treatable with broad-spectrum antibiotics, there would be many benefits of a chlamydia-specific therapy. Previously, we have identified a small-molecule lead compound JO146 [Boc-Val-Pro-ValP(OPh)2] targeting the bacterial serine protease HtrA, which is essential in bacterial replication, virulence and survival, particularly under stress conditions. JO146 is highly efficacious in attenuating infectivity of both human (C. trachomatis) as well as koala (C. pecorum) species in vitro and in vivo, without host cell toxicity. Herein, we present our continuing efforts on optimizing JO146 by modifying the N-capping group as well as replacing the parent peptide structure with the 2-pyridone scaffold at P3/P2. The drug optimization process was guided by molecular modelling, enzyme and cell-based assays. Compound 18b from the pyridone series showed improved inhibitory activity against CtHtrA by 5-fold and selectivity over human neutrophil elastase (HNE) by 109-fold compared to JO146, indicating that 2-pyridone is a suitable bioisostere of the P3/P2 amide/proline for developing CtHtrA inhibitors. Most pyridone-based inhibitors showed superior anti-chlamydial potency to JO146 especially at lower doses (25 and 50 µM) in C. trachomatis and C. pecorum cell culture assays. Modifications of the N-capping group of the peptidyl inhibitors did not have much influence on the anti-chlamydial activities, providing opportunities for more versatile alterations and future optimization. In summary, we present 2-pyridone based analogues as a new generation of non-peptidic CtHtrA inhibitors, which hold better promise as anti-chlamydial drug candidates.


Assuntos
Antibacterianos/farmacologia , Chlamydophila/enzimologia , Peptídeos/farmacologia , Piridonas/farmacologia , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Piridonas/química , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Access Microbiol ; 3(3): 000204, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34151159

RESUMO

Urogenital Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection throughout the world. While progress has been made to better understand how type strains develop and respond to environmental stress in vitro, very few studies have examined how clinical isolates behave under similar conditions. Here, we examined the development and persistence phenotypes of several clinical isolates, to determine how similar they are to each other, and the type strain C. trachomatis D/UW-3/Cx. The type strain was shown to produce infectious progeny at a higher magnitude than each of the clinical isolates, in each of the six tested cell lines. All chlamydial strains produced the highest number of infectious progeny at 44 h post-infection in the McCoy B murine fibroblast cell line, yet showed higher levels of infectivity in the MCF-7 human epithelial cell line. The clinical isolates were shown to be more susceptible than the type strain to the effects of penicillin and iron deprivation persistence models in the MCF-7 cell line. While subtle differences between clinical isolates were observed throughout the experiments conducted, no significant differences were identified. This study reinforces the importance of examining clinical isolates when trying to relate in vitro data to clinical outcomes, as well as the importance of considering the adaptations many type strains have to being cultured in vitro.

12.
Sci Rep ; 11(1): 10399, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001998

RESUMO

Dual RNA-seq experiments examining viral and bacterial pathogens are increasing, but vary considerably in their experimental designs, such as infection rates and RNA depletion methods. Here, we have applied dual RNA-seq to Chlamydia trachomatis infected epithelial cells to examine transcriptomic responses from both organisms. We compared two time points post infection (1 and 24 h), three multiplicity of infection (MOI) ratios (0.1, 1 and 10) and two RNA depletion methods (rRNA and polyA). Capture of bacterial-specific RNA were greatest when combining rRNA and polyA depletion, and when using a higher MOI. However, under these conditions, host RNA capture was negatively impacted. Although it is tempting to use high infection rates, the implications on host cell survival, the potential reduced length of infection cycles and real world applicability should be considered. This data highlights the delicate nature of balancing host-pathogen RNA capture and will assist future transcriptomic-based studies to achieve more specific and relevant infection-related biological insights.


Assuntos
Infecções por Chlamydia/genética , Chlamydia trachomatis/isolamento & purificação , Interações Hospedeiro-Patógeno/genética , RNA-Seq/métodos , Sobrevivência Celular/genética , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Poli A/genética , Poli A/isolamento & purificação , Poli A/metabolismo , RNA Bacteriano/genética , RNA Ribossômico/genética , RNA Ribossômico/isolamento & purificação , RNA Ribossômico/metabolismo , Sequenciamento do Exoma
13.
PLoS One ; 16(4): e0249658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33852625

RESUMO

Devastating fires in Australia over 2019-20 decimated native fauna and flora, including koalas. The resulting population bottleneck, combined with significant loss of habitat, increases the vulnerability of remaining koala populations to threats which include disease. Chlamydia is one disease which causes significant morbidity and mortality in koalas. The predominant pathogenic species, Chlamydia pecorum, causes severe ocular, urogenital and reproductive tract disease. In marsupials, including the koala, gene expansions of an antimicrobial peptide family known as cathelicidins have enabled protection of immunologically naïve pouch young during early development. We propose that koala cathelicidins are active against Chlamydia and other bacteria and fungi. Here we describe ten koala cathelicidins, five of which contained full length coding sequences that were widely expressed in tissues throughout the body. Focusing on these five, we investigate their antimicrobial activity against two koala C. pecorum isolates from distinct serovars; MarsBar and IPTaLE, as well as other bacteria and fungi. One cathelicidin, PhciCath5, inactivated C. pecorum IPTaLE and MarsBar elementary bodies and significantly reduced the number of inclusions compared to the control (p<0.0001). Despite evidence of cathelicidin expression within tissues known to be infected by Chlamydia, natural PhciCath5 concentrations may be inadequate in vivo to prevent or control C. pecorum infections in koalas. PhciCath5 also displayed antimicrobial activity against fungi and Gram negative and positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Electrostatic interactions likely drive PhciCath5 adherence to the pathogen cell membrane, followed by membrane permeabilisation leading to cell death. Activity against E. coli was reduced in the presence of 10% serum and 20% whole blood. Future modification of the PhciCath5 peptide to enhance activity, including in the presence of serum/blood, may provide a novel solution to Chlamydia infection in koalas and other species.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Phascolarctidae/microbiologia , Animais , Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Austrália , Chlamydia/genética , Chlamydia/patogenicidade , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/prevenção & controle , Escherichia coli/genética , Marsupiais/genética , Marsupiais/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Phascolarctidae/genética , Phascolarctidae/metabolismo , Catelicidinas
14.
Epigenetics Chromatin ; 13(1): 45, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109274

RESUMO

Chlamydia are Gram-negative, obligate intracellular bacterial pathogens responsible for a broad spectrum of human and animal diseases. In humans, Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and is the causative agent of trachoma (infectious blindness) in disadvantaged populations. Over the course of its developmental cycle, Chlamydia extensively remodels its intracellular niche and parasitises the host cell for nutrients, with substantial resulting changes to the host cell transcriptome and proteome. However, little information is available on the impact of chlamydial infection on the host cell epigenome and global gene regulation. Regions of open eukaryotic chromatin correspond to nucleosome-depleted regions, which in turn are associated with regulatory functions and transcription factor binding. We applied formaldehyde-assisted isolation of regulatory elements enrichment followed by sequencing (FAIRE-Seq) to generate temporal chromatin maps of C. trachomatis-infected human epithelial cells in vitro over the chlamydial developmental cycle. We detected both conserved and distinct temporal changes to genome-wide chromatin accessibility associated with C. trachomatis infection. The observed differentially accessible chromatin regions include temporally-enriched sets of transcription factors, which may help shape the host cell response to infection. These regions and motifs were linked to genomic features and genes associated with immune responses, re-direction of host cell nutrients, intracellular signalling, cell-cell adhesion, extracellular matrix, metabolism and apoptosis. This work provides another perspective to the complex response to chlamydial infection, and will inform further studies of transcriptional regulation and the epigenome in Chlamydia-infected human cells and tissues.


Assuntos
Infecções por Chlamydia/genética , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Células Epiteliais/metabolismo , Chlamydia/patogenicidade , Cromatina/química , Epigenoma , Células Epiteliais/parasitologia , Células Hep G2 , Humanos
15.
Pathog Dis ; 78(6)2020 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-32901793

RESUMO

Adverse reproductive health outcomes, such as pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility, have been associated with Chlamydia trachomatis and Neisseria gonorrhoea infections. These reproductive health outcomes could be complemented by measuring subsequent pregnancies to assess impact on fertility. The study design was a cohort study of women in Queensland (QLD), Australia, using data linkage methods to link chlamydia and/or gonorrhea testing records (including an unexposed group undergoing full blood count tests; 2000 and 2005) with the QLD Perinatal Registry (2000-2013). The cohort included 132 962 women, with 69 533 records of pregnancies. Women in the exposed group, with no prior pregnancy, had a reduced odds of a pregnancy during the follow up of the study (20-year-old (at 2005) aOR 0.91 95% CI 0.87-0.95, and 25-year-old aOR 0.71 95% CI 0.68-0.75). Women in the exposed group with a prior pregnancy had increased odds of pregnancy during the follow up of the study (20-year-old (at 2005) aOR 1.72 95% CI 1.59-1.86, and 25-year-old aOR 1.35 95% CI 1.26-1.45). Our data provides further evidence at a population level of the significant impact on reproductive outcomes associated with chlamydia and gonorrhea.


Assuntos
Infecções por Chlamydia/complicações , Gonorreia/complicações , Complicações Infecciosas na Gravidez/microbiologia , Saúde Reprodutiva , Adulto , Austrália/epidemiologia , Declaração de Nascimento , Infecções por Chlamydia/epidemiologia , Chlamydia trachomatis , Feminino , Gonorreia/epidemiologia , Humanos , Recém-Nascido de Baixo Peso , Armazenamento e Recuperação da Informação/métodos , Neisseria gonorrhoeae , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Resultado da Gravidez , Nascimento Prematuro , Estudos Retrospectivos , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia , Adulto Jovem
17.
Artigo em Inglês | MEDLINE | ID: mdl-31803632

RESUMO

Chlamydia are Gram-negative obligate intracellular bacterial pathogens responsible for a variety of disease in humans and animals worldwide. Chlamydia trachomatis causes trachoma in disadvantaged populations, and is the most common bacterial sexually transmitted infection in humans, causing reproductive tract disease. Antibiotic therapy successfully treats diagnosed chlamydial infections, however asymptomatic infections are common. High-throughput transcriptomic approaches have explored chlamydial gene expression and infected host cell gene expression. However, these were performed on large cell populations, averaging gene expression profiles across all cells sampled and potentially obscuring biologically relevant subsets of cells. We generated a pilot dataset, applying single cell RNA-Seq (scRNA-Seq) to C. trachomatis infected and mock-infected epithelial cells to assess the utility, pitfalls and challenges of single cell approaches applied to chlamydial biology, and to potentially identify early host cell biomarkers of chlamydial infection. Two hundred sixty-four time-matched C. trachomatis-infected and mock-infected HEp-2 cells were collected and subjected to scRNA-Seq. After quality control, 200 cells were retained for analysis. Two distinct clusters distinguished 3-h cells from 6- and 12-h. Pseudotime analysis identified a possible infection-specific cellular trajectory for Chlamydia-infected cells, while differential expression analyses found temporal expression of metallothioneins and genes involved with cell cycle regulation, innate immune responses, cytoskeletal components, lipid biosynthesis and cellular stress. We find that changes to the host cell transcriptome at early times of C. trachomatis infection are readily discernible by scRNA-Seq, supporting the utility of single cell approaches to identify host cell biomarkers of chlamydial infection, and to further deconvolute the complex host response to infection.


Assuntos
Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno/genética , Transcrição Gênica , Linhagem Celular , Análise por Conglomerados , Análise de Célula Única
18.
J Bacteriol ; 202(1)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31611288

RESUMO

The obligate intracellular pathogen Chlamydia trachomatis is a globally significant cause of sexually transmitted bacterial infections and the leading etiological agent of preventable blindness. The first-row transition metal iron (Fe) plays critical roles in chlamydial cell biology, and acquisition of this nutrient is essential for the survival and virulence of the pathogen. Nevertheless, how C. trachomatis acquires Fe from host cells is not well understood, since it lacks genes encoding known siderophore biosynthetic pathways, receptors for host Fe storage proteins, and the Fe acquisition machinery common to many bacteria. Recent studies have suggested that C. trachomatis directly acquires host Fe via the ATP-binding cassette permease YtgABCD. Here, we characterized YtgA, the periplasmic solute binding protein component of the transport pathway, which has been implicated in scavenging Fe(III) ions. The structure of Fe(III)-bound YtgA was determined at 2.0-Å resolution with the bound ion coordinated via a novel geometry (3 Ns, 2 Os [3N2O]). This unusual coordination suggested a highly plastic metal binding site in YtgA capable of interacting with other cations. Biochemical analyses showed that the metal binding site of YtgA was not restricted to interaction with only Fe(III) ions but could bind all transition metal ions examined. However, only Mn(II), Fe(II), and Ni(II) ions bound reversibly to YtgA, with Fe being the most abundant cellular transition metal in C. trachomatis Collectively, these findings show that YtgA is the metal-recruiting component of the YtgABCD permease and is most likely involved in the acquisition of Fe(II) and Mn(II) from host cells.IMPORTANCEChlamydia trachomatis is the most common bacterial sexually transmitted infection in developed countries, with an estimated global prevalence of 4.2% in the 15- to 49-year age group. Although infection is asymptomatic in more than 80% of infected women, about 10% of cases result in serious disease. Infection by C. trachomatis is dependent on the ability to acquire essential nutrients, such as the transition metal iron, from host cells. In this study, we show that iron is the most abundant transition metal in C. trachomatis and report the structural and biochemical properties of the iron-recruiting protein YtgA. Knowledge of the high-resolution structure of YtgA will provide a platform for future structure-based antimicrobial design approaches.


Assuntos
Antígenos de Bactérias/química , Proteínas de Ligação ao Ferro/química , Ferro/metabolismo , Antígenos de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Ferro/metabolismo
19.
PLoS One ; 14(9): e0222595, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536549

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium with a distinctive biphasic developmental cycle that alternates between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body (RB). Members of the genus Chlamydia are dependent on the formation and degradation of protein disulfide bonds. Moreover, disulfide cross-linking of EB envelope proteins is critical for the infection phase of the developmental cycle. We have identified in C. trachomatis a homologue of the Disulfide Bond forming membrane protein Escherichia coli (E. coli) DsbB (hereafter named CtDsbB) and-using recombinant purified proteins-demonstrated that it is the redox partner of the previously characterised periplasmic oxidase C. trachomatis Disulfide Bond protein A (CtDsbA). CtDsbA protein was detected in C. trachomatis inclusion vacuoles at 20 h post infection, with more detected at 32 and similar levels at 44 h post infection as the developmental cycle proceeds. As a redox pair, CtDsbA and CtDsbB largely resemble their homologous counterparts in E. coli; CtDsbA is directly oxidised by CtDsbB, in a reaction in which both periplasmic cysteine pairs of CtDsbB are required for complete activity. In our hands, this reaction is slow relative to that observed for E. coli equivalents, although this may reflect a non-native expression system and use of a surrogate quinone cofactor. CtDsbA has a second non-catalytic disulfide bond, which has a small stabilising effect on the protein's thermal stability, but which does not appear to influence the interaction of CtDsbA with its partner protein CtDsbB. Expression of CtDsbA during the RB replicative phase and during RB to EB differentiation coincided with the oxidation of the chlamydial outer membrane complex (COMC). Together with our demonstration of an active redox pairing, our findings suggest a potential role for CtDsbA and CtDsbB in the critical disulfide bond formation step in the highly regulated development cycle.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Escherichia coli/metabolismo , Oxirredução , Domínios Proteicos/fisiologia , Proteínas Recombinantes/metabolismo
20.
Bioorg Med Chem ; 27(18): 4185-4199, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31395511

RESUMO

Chlamydia trachomatis high temperature requirement A (CtHtrA) is a serine protease that performs proteolytic and chaperone functions in pathogenic Chlamydiae; and is seen as a prospective drug target. This study details the strategies employed in optimizing the irreversible CtHtrA inhibitor JO146 [Boc-Val-Pro-ValP(OPh)2] for potency and selectivity. A series of adaptations both at the warhead and specificity residues P1 and P3 yielded 23 analogues, which were tested in human neutrophil elastase (HNE) and CtHtrA enzyme assays as well as Chlamydia cell culture assays. Trypsin and chymotrypsin inhibition assays were also conducted to measure off-target selectivity. Replacing the phosphonate moiety with α-ketobenzothiazole produced a reversible analogue with considerable CtHtrA inhibition and cell culture activity. Tertiary leucine at P3 (8a) yielded approximately 33-fold increase in CtHtrA inhibitory activity, with an IC50 = 0.68 ±â€¯0.02 µM against HNE, while valine at P1 retained the best anti-chlamydial activity. This study provides a pathway for obtaining clinically relevant inhibitors.


Assuntos
Chlamydia trachomatis/patogenicidade , Peptídeos/química , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...