Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 89(11): 6224-6231, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485963

RESUMO

Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. We demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar+ and Ga+ sputtering. The useful yield for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.

2.
Nat Commun ; 6: 7444, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26100451

RESUMO

Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric (53)Mn-(53)Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first (53)Mn-(53)Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and (53)Mn-(53)Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ∼1.8-2.5 Myr after CAIs.

3.
Forensic Sci Int ; 240: 111-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24836840

RESUMO

Early in 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. During the search of the laboratory, a small glass jar labelled "Gamma Source" and containing a green powder was discovered. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterise and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key 'nuclear forensic signatures' used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.

4.
Appl Spectrosc ; 67(9): 1049-56, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24067636

RESUMO

Uranium ore concentrates (UOCs) are produced at mining facilities from the various types of uranium-bearing ores using several processes that can include different reagents, separation procedures, and drying conditions. The final UOC products can consist of different uranium species, which are important to identify to trace interdicted samples back to their origins. Color has been used as a simple indicator; however, visual determination is subjective and no chemical information is provided. In this work, we report the application of near-infrared (NIR) spectroscopy as a non-contact, non-destructive method to rapidly analyze UOC materials for species and/or process information. Diffuse reflectance spectra from 350 to 2500 nm were measured from a number UOC samples that were also characterized by X-ray diffraction. Combination and overtone bands were used to identify the amine and hydroxyl-containing species, such as ammonium uranates or ammonium uranyl carbonate, while other uranium oxide species (e.g., uranium trioxide [UO3] and triuranium octoxide [U3O8]) exhibit absorption bands arising from crystal field effects and electronic transitions. Principal component analysis was used to classify the different UOC materials.

5.
J Biol Chem ; 288(23): 16855-16861, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23609440

RESUMO

The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. Thus, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.


Assuntos
Colesterol/metabolismo , Fibroblastos/metabolismo , Microdomínios da Membrana/metabolismo , Esfingolipídeos/metabolismo , Animais , Citoesqueleto/metabolismo , Fibroblastos/citologia , Camundongos , Células NIH 3T3
6.
Proc Natl Acad Sci U S A ; 110(8): E613-22, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23359681

RESUMO

Sphingolipids play important roles in plasma membrane structure and cell signaling. However, their lateral distribution in the plasma membrane is poorly understood. Here we quantitatively analyzed the sphingolipid organization on the entire dorsal surface of intact cells by mapping the distribution of (15)N-enriched ions from metabolically labeled (15)N-sphingolipids in the plasma membrane, using high-resolution imaging mass spectrometry. Many types of control experiments (internal, positive, negative, and fixation temperature), along with parallel experiments involving the imaging of fluorescent sphingolipids--both in living cells and during fixation of living cells--exclude potential artifacts. Micrometer-scale sphingolipid patches consisting of numerous (15)N-sphingolipid microdomains with mean diameters of ∼200 nm are always present in the plasma membrane. Depletion of 30% of the cellular cholesterol did not eliminate the sphingolipid domains, but did reduce their abundance and long-range organization in the plasma membrane. In contrast, disruption of the cytoskeleton eliminated the sphingolipid domains. These results indicate that these sphingolipid assemblages are not lipid rafts and are instead a distinctly different type of sphingolipid-enriched plasma membrane domain that depends upon cortical actin.


Assuntos
Fibroblastos/química , Lipídeos de Membrana/química , Esfingolipídeos/química , Membrana Celular/química , Hemaglutininas/química , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Espectrometria de Massa de Íon Secundário
7.
Bioconjug Chem ; 23(3): 450-60, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22284327

RESUMO

The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein's activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests to determine whether specific proteins colocalize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein colocalization with specific lipid species.


Assuntos
Coloides , Flúor/química , Ouro/química , Imunoconjugados/química , Lipídeos/química , Proteínas/química , Espectrometria de Massa de Íon Secundário/métodos , Microscopia Eletrônica de Varredura
8.
Science ; 331(6021): 1175-8, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21385711

RESUMO

Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

9.
Biochim Biophys Acta ; 1808(1): 307-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20883665

RESUMO

Cholesterol is believed to be an important component in compositionally distinct lipid domains in the cellular plasma membrane, which are referred to as lipid rafts. Insight into how cholesterol influences the interactions that contribute to plasma membrane organization can be acquired from model lipid membranes. Here we characterize the lipid mixing and phase behavior exhibited by (15)N-dilaurolyphosphatidycholine ((15)N-DLPC)/deuterated distearoylphosphatiylcholine (D(70)-DSPC) membranes with various amounts of cholesterol (0, 3, 7, 15 or 19mol%) at room temperature. The microstructures and compositions of individual membrane domains were determined by imaging the same membrane locations with both atomic force microscopy (AFM) and high-resolution secondary ion mass spectrometry (SIMS) performed with a Cameca NanoSIMS 50. As the cholesterol composition increased from 0 to 19mol%, the circular ordered domains became more elongated, and the amount of (15)N-DLPC in the gel-phase domains remained constant at 6-7mol%. Individual and micron-sized clusters of nanoscopic domains enriched in D(70)-DSPC were abundant in the 19mol% cholesterol membrane. AFM imaging showed that these lipid domains had irregular borders, indicating that they were gel-phase domains, and not non-ideally mixed lipid clusters or nanoscopic liquid-ordered domains.


Assuntos
Colesterol/química , Lipídeos de Membrana/química , Microscopia de Força Atômica/métodos , Géis , Bicamadas Lipídicas/química , Fluidez de Membrana , Microdomínios da Membrana/química , Membranas/química , Peptídeos/química , Fosfatidilcolinas/química , Temperatura
10.
Appl Environ Microbiol ; 76(10): 3275-82, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20348293

RESUMO

We present the first direct visualization and quantification of water and ion uptake into the core of individual dormant Bacillus thuringiensis subsp. israelensis (B. thuringiensis subsp. israelensis) endospores. Isotopic and elemental gradients in the B. thuringiensis subsp. israelensis spores show the permeation and incorporation of deuterium in deuterated water (D(2)O) and solvated ions throughout individual spores, including the spore core. Under hydrated conditions, incorporation into a spore occurs on a time scale of minutes, with subsequent uptake of the permeating species continuing over a period of days. The distribution of available adsorption sites is shown to vary with the permeating species. Adsorption sites for Li(+), Cs(+), and Cl(-) are more abundant within the spore outer structures (exosporium, coat, and cortex) relative to the core, while F(-) adsorption sites are more abundant in the core. The results presented here demonstrate that elemental abundance and distribution in dormant spores are influenced by the ambient environment. As such, this study highlights the importance of understanding how microbial elemental and isotopic signatures can be altered postproduction, including during sample preparation for analysis, and therefore, this study is immediately relevant to the use of elemental and isotopic markers in environmental microbiology and microbial forensics.


Assuntos
Bacillus thuringiensis/metabolismo , Íons/metabolismo , Esporos Bacterianos/metabolismo , Água/metabolismo , Ânions/metabolismo , Parede Celular/química , Metais/metabolismo , Esporos Bacterianos/química
11.
Proc Natl Acad Sci U S A ; 106(46): 19233-8, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19880742

RESUMO

The deepest rocks known from within Earth are fragments of normal mantle ( approximately 400 km) and metamorphosed sediments ( approximately 350 km), both found exhumed in continental collision terranes. Here, we report fragments of a highly reduced deep mantle environment from at least 300 km, perhaps very much more, extracted from chromite of a Tibetan ophiolite. The sample consists, in part, of diamond, coesite-after-stishovite, the high-pressure form of TiO(2), native iron, high-pressure nitrides with a deep mantle isotopic signature, and associated SiC. This appears to be a natural example of the recently discovered disproportionation of Fe(2+) at very high pressure and consequent low oxygen fugacity (fO(2)) in deep Earth. Encapsulation within chromitite enclosed within upwelling solid mantle rock appears to be the only vehicle capable of transporting these phases and preserving their low-fO(2) environment at the very high temperatures of oceanic spreading centers.

12.
Proc Natl Acad Sci U S A ; 106(15): 6345-50, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332780

RESUMO

The marine cyanobacterium Trichodesmium is ubiquitous in tropical and subtropical seas and is an important contributor to global N and C cycling. We sought to characterize metabolic uptake patterns in individual Trichodesmium IMS-101 cells by quantitatively imaging (13)C and (15)N uptake with high-resolution secondary ion mass spectrometry (NanoSIMS). Trichodesmium fix both CO(2) and N(2) concurrently during the day and are, thus, faced with a balancing act: the O(2) evolved during photosynthesis inhibits nitrogenase, the key enzyme in N(2) fixation. After performing correlated transmission electron microscopy (TEM) and NanoSIMS analysis on trichome thin-sections, we observed transient inclusion of (15)N and (13)C into discrete subcellular bodies identified as cyanophycin granules. We speculate that Trichodesmium uses these dynamic storage bodies to uncouple CO(2) and N(2) fixation from overall growth dynamics. We also directly quantified both CO(2) and N(2) fixation at the single cell level using NanoSIMS imaging of whole cells in multiple trichomes. Our results indicate maximal CO(2) fixation rates in the morning, compared with maximal N(2) fixation rates in the afternoon, bolstering the argument that segregation of CO(2) and N(2) fixation in Trichodesmium is regulated in part by temporal factors. Spatial separation of N(2) and CO(2) fixation may also have a role in metabolic segregation in Trichodesmium. Our approach in combining stable isotope labeling with NanoSIMS and TEM imaging can be extended to other physiologically relevant elements and processes in other important microbial systems.


Assuntos
Cianobactérias/química , Cianobactérias/metabolismo , Fixação de Nitrogênio , Fotossíntese , Cianobactérias/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Espectrometria de Massa de Íon Secundário
13.
Anal Chem ; 80(15): 5986-92, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18578543

RESUMO

We present a quantitative, imaging technique based on nanometer-scale secondary ion mass spectrometry for mapping the 3D elemental distribution present in an individual micrometer-sized Bacillus spore. We use depth profile analysis to access the 3D compositional information of an intact spore without the additional sample preparation steps (fixation, embedding, and sectioning) typically used to access substructural information in biological samples. The method is designed to ensure sample integrity for forensic characterization of Bacillus spores. The minimal sample preparation/alteration required in this methodology helps to preserve sample integrity. Furthermore, the technique affords elemental distribution information at the individual spore level with nanometer-scale spatial resolution and high (microg/g) analytical sensitivity. We use the technique to map the 3D elemental distribution present within Bacillus thuringiensis israelensis spores.


Assuntos
Imageamento Tridimensional/métodos , Espectrometria de Massa de Íon Secundário/métodos , Esporos Bacterianos/química , Esporos Bacterianos/ultraestrutura , Bacillus , Bacillus thuringiensis , Elementos Químicos , Ciências Forenses/métodos
14.
Appl Environ Microbiol ; 74(10): 3143-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18359832

RESUMO

To examine phylogenetic identity and metabolic activity of individual cells in complex microbial communities, we developed a method which combines rRNA-based in situ hybridization with stable isotope imaging based on nanometer-scale secondary-ion mass spectrometry (NanoSIMS). Fluorine or bromine atoms were introduced into cells via 16S rRNA-targeted probes, which enabled phylogenetic identification of individual cells by NanoSIMS imaging. To overcome the natural fluorine and bromine backgrounds, we modified the current catalyzed reporter deposition fluorescence in situ hybridization (FISH) technique by using halogen-containing fluorescently labeled tyramides as substrates for the enzymatic tyramide deposition. Thereby, we obtained an enhanced element labeling of microbial cells by FISH (EL-FISH). The relative cellular abundance of fluorine or bromine after EL-FISH exceeded natural background concentrations by up to 180-fold and allowed us to distinguish target from non-target cells in NanoSIMS fluorine or bromine images. The method was optimized on single cells of axenic Escherichia coli and Vibrio cholerae cultures. EL-FISH/NanoSIMS was then applied to study interrelationships in a dual-species consortium consisting of a filamentous cyanobacterium and a heterotrophic alphaproteobacterium. We also evaluated the method on complex microbial aggregates obtained from human oral biofilms. In both samples, we found evidence for metabolic interactions by visualizing the fate of substrates labeled with (13)C-carbon and (15)N-nitrogen, while individual cells were identified simultaneously by halogen labeling via EL-FISH. Our novel approach will facilitate further studies of the ecophysiology of known and uncultured microorganisms in complex environments and communities.


Assuntos
Bactérias/metabolismo , Hibridização In Situ/métodos , Marcação por Isótopo/métodos , Coloração e Rotulagem/métodos , Adulto , Bactérias/classificação , Bactérias/genética , Biofilmes , Bromo/metabolismo , Isótopos de Carbono/metabolismo , Flúor/metabolismo , Humanos , Masculino , Microscopia de Fluorescência , Boca/microbiologia , Isótopos de Nitrogênio/metabolismo , RNA Ribossômico 16S/genética
15.
ISME J ; 1(4): 354-60, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18043646

RESUMO

Filamentous nitrogen fixing cyanobacteria are key players in global nutrient cycling, but the relationship between CO2- and N2-fixation and intercellular exchange of these elements remains poorly understood in many genera. Using high-resolution nanometer-scale secondary ion mass spectrometry (NanoSIMS) in conjunction with enriched H13CO3- and 15N2 incubations of Anabaena oscillarioides, we imaged the cellular distributions of C, N and P and 13C and 15N enrichments at multiple time points during a diurnal cycle as proxies for C and N assimilation. The temporal and spatial distributions of the newly fixed C and N were highly heterogeneous at both the intra- and inter-cellular scale, and indicative of regions performing active assimilation and biosynthesis. Subcellular components such as the neck region of heterocycts, cell division septae and putative cyanophycin granules were clearly identifiable by their elemental composition. Newly fixed nitrogen was rapidly exported from heterocysts and was evenly allocated among vegetative cells, with the exception of the most remote vegetative cells between heterocysts, which were N limited based on lower 15N enrichment. Preexisting functional heterocysts had the lowest levels of 13C and 15N enrichment, while heterocysts that were inferred to have differentiated during the experiment had higher levels of enrichment. This innovative approach, combining stable isotope labeling and NanoSIMS elemental and isotopic imaging, allows characterization of cellular development (division, heterocyst differentiation), changes in individual cell composition and cellular roles in metabolite exchange.


Assuntos
Anabaena/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Anabaena/crescimento & desenvolvimento , Carbono/análise , Análise em Microsséries , Nitrogênio/análise , Fixação de Nitrogênio , Espectrometria de Massa de Íon Secundário
16.
Science ; 316(5831): 1600-3, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17569859

RESUMO

High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Nanopartículas , Sulfetos , Compostos de Zinco , Aminoácidos/química , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Precipitação Química , Microscopia Eletrônica de Transmissão , Nitrogênio/análise , Oxirredução , Tamanho da Partícula , Espectrometria de Massa de Íon Secundário , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfetos/química , Compostos de Zinco/química
17.
Science ; 314(5806): 1724-8, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170292

RESUMO

Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.


Assuntos
Isótopos de Carbono/análise , Deutério/análise , Isótopos/análise , Meteoroides , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Hidrogênio/análise , Neônio/análise , Gases Nobres/análise , Astronave
18.
Environ Sci Technol ; 40(21): 6744-9, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17144305

RESUMO

Injection of carbon dioxide into depleted oil fields or deep saline aquifers represents one of the most promising means of long-term storage of this greenhouse gas. While the ultimate goal of CO2 injection in the subsurface is mineral storage of CO2 as carbonates, short-term (<50 year) storage of injected CO2 is most likely to be accomplished by ionic trapping of CO2 as bicarbonate ions (HCO3-) and hydrogeological trapping of molecular CO2. Here, we demonstrate a technique for quantifying ionic trapping of injected CO2 as HCO3- using geochemical data collected prior to and during 40 months of CO2 injection into a hydrocarbon reservoir at the International Energy Agency (IEA) Weyburn CO2 Monitoring and Storage Project, Saskatchewan, Canada. As a result of injection of CO2 with a low carbon isotope ratio (delta13C value), fluid and gas samples from four selected production wells showed an increase in HCO3- concentration and a decrease in delta13C values of HCO3- and CO2 over the observation period. Isotope and mass balance calculations indicate that, after 40 months of injection, approximately 80% of the HCO3- in the reservoir brines sampled from the four wells formed via dissolution and dissociation of injected CO2. This chemical and isotopic technique should be applicable to CO2 injection and storage in oil fields and in deep saline aquifers, provided there is sufficient carbon isotopic distinction between injected CO2 and baseline aquifer HCO3- and CO2.


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/toxicidade , Indústrias Extrativas e de Processamento , Petróleo , Bicarbonatos/análise , Carbono/análise , Dióxido de Carbono/análise , Isótopos de Carbono , Carbonatos/química , Técnicas de Química Analítica/métodos , Poluentes Ambientais , Indústrias , Íons , Modelos Químicos , Mar do Norte , Texas
19.
Science ; 313(5795): 1948-51, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-17008528

RESUMO

Lateral variations in membrane composition are postulated to play a central role in many cellular events, but it has been difficult to probe membrane composition and organization on length scales of tens to hundreds of nanometers. We present a high-resolution imaging secondary ion mass spectrometry technique to reveal the lipid distribution within a phase-separated membrane with a lateral resolution of approximately 100 nanometers. Quantitative information about the chemical composition within small lipid domains was obtained with the use of isotopic labels to identify each molecular species. Composition variations were detected within some domains.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/análise , Microdomínios da Membrana/química , Fosfatidilcolinas/análise , Espectrometria de Massa de Íon Secundário/métodos , Membrana Celular/química , Microdomínios da Membrana/ultraestrutura , Proteínas de Membrana/análise , Nanotecnologia
20.
Chemosphere ; 60(10): 1416-26, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16054911

RESUMO

We conducted kinetic and equilibrium sorption experiments on removal of Zn(II) from aqueous solutions by scoria (a vesicular pyroclastic rock with basaltic composition) from Jeju Island, Korea, in order to examine its potential use as an efficient sorbent. The batch-type kinetic sorption tests under variable conditions indicated that the percentage of Zn(II) removal by scoria increases with decreasing initial Zn(II) concentration, particle size, and sorbate/sorbent ratio. However, the sorption capacity decreases with the decrease of the initial Zn(II) concentration and sorbate/sorbent ratio. Equilibrium sorption tests show that Jeju scoria has a larger capacity and affinity for Zn(II) sorption than commercial powdered activated carbon (PAC); at initial Zn(II) concentrations of more than 10mM, the sorption capacity of Jeju scoria is about 1.5 times higher than that of PAC. The acquired sorption data are better fitted to the Langmuir isotherm than the Freundlich isotherm. Careful examination of ionic concentrations in sorption batches suggests that the sorption behavior is mainly controlled by cation exchange and typically displays characteristics of 'cation sorption'. The Zn(II) removal capacity decreases when solution pH decreases because of the competition with hydrogen ions for sorption sites, while the Zn(II) removal capacity increases under higher pH conditions, likely due to hydroxide precipitation. At an initial Zn(II) concentration of 5.0mM, the removal increases from 70% to 96% with the increase of initial pH from 3.0 to 7.0. We recommend Jeju scoria as an economic and efficient sorbent for Zn(II) in contaminated water.


Assuntos
Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Zinco/isolamento & purificação , Adsorção , Carbono/química , Concentração de Íons de Hidrogênio , Minerais/química , Tamanho da Partícula , Silicatos/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...