Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Neurology ; 102(5): e209137, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38315945

RESUMO

BACKGROUND AND OBJECTIVES: Sensitive, reliable, and scalable biomarkers are needed to accelerate the development of therapies for Parkinson disease (PD). In this study, we evaluate the biomarkers of early PD diagnosis, disease progression, and treatment effect collected in the SPARK. METHODS: Cinpanemab is a human-derived monoclonal antibody binding preferentially to aggregated forms of extracellular α-synuclein. SPARK was a randomized, double-blind, placebo-controlled, phase 2 multicenter trial evaluating 3 cinpanemab doses administered intravenously every 4 weeks for 52 weeks with an active treatment dose-blind extension period for up to 112 weeks. SPARK enrolled 357 participants diagnosed with PD within 3 years, aged 40-80 years, ≤2.5 on the modified Hoehn and Yahr scale, and with evidence of striatal dopaminergic deficit. The primary outcome was change from baseline in the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale total score. Secondary and exploratory biomarker outcomes evaluated change from baseline at week 52 relative to placebo. Dopamine transporter SPECT and MRI were used to quantify changes in the nigrostriatal dopamine pathway and regional atrophy. CSF and plasma samples were used to assess change in total α-synuclein levels, α-synuclein seeding, and neurofilament light chain levels. SPARK was conducted from January 2018 to April 2021 and terminated due to lack of efficacy. RESULTS: Approximately 3.8% (15/398) of SPECT-imaged participants did not have evidence of dopaminergic deficit and were screen-failed. Binary classification of α-synuclein seeding designated 93% (110/118) of the enrolled CSF subgroup as positive for α-synuclein seeds at baseline. Clinical disease progression was observed, with no statistically significant difference in cinpanemab groups compared with that in placebo. Ninety-nine percent of participants with positive α-synuclein seeding remained positive through week 52. No statistically significant changes from baseline were observed between treatment groups and placebo across biomarker measures. Broadly, there was minimal annual change with high interindividual variability across biomarkers-with striatal binding ratios of the ipsilateral putamen showing the greatest mean change/SD over time. DISCUSSION: Biomarker results indicated enrollment of the intended population with early PD, but there was no significant correlation with disease progression or clear evidence of a cinpanemab treatment effect on biomarker measures. Suitable biomarkers for evaluating disease severity and progression in early PD trials are still needed. TRIAL REGISTRATION INFORMATION: NCT03318523 (clinicaltrials.gov/ct2/show/NCT03318523); Submitted October 24, 2017; First patient enrolled January 2018.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína , Antiparkinsonianos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Dopamina/metabolismo , Biomarcadores , Progressão da Doença , Método Duplo-Cego
2.
JAMA Neurol ; 80(12): 1344-1352, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902726

RESUMO

Importance: Accumulation of hyperphosphorylated, tangled microtubule-associated protein tau (MAPT) is a pathological hallmark of Alzheimer disease (AD) associated with disease progression and cognitive decline. Objective: To evaluate the effect of tau synthesis reduction on tau biomarkers in patients with mild AD. Design, Setting, and Participants: This randomized clinical trial was a double-blind, placebo-controlled 36-week multiple-ascending dose (MAD) phase 1b trial (October 2017 to September 2020), followed by a 64- or 71-week open-label long-term extension (LTE) (October 2019 to May 2022). After being assessed for eligibility at 12 sites in Canada and Europe, participants with mild AD and confirmed amyloid pathology were randomized 3:1 (BIIB080:placebo) in 4 dose cohorts. Intervention: Intrathecal administration of BIIB080, a MAPT-targeting antisense oligonucleotide, or placebo. Active dose arms included 10 mg every 4 weeks, 30 mg every 4 weeks, 60 mg every 4 weeks, and 115 mg every 12 weeks during the MAD period and 60 mg every 12 weeks or 115 mg every 12 weeks during the LTE. Main Outcome and Measures: The original primary end point was safety. Additionally, BIIB080, total tau (t-tau), and phosphorylated tau 181 (p-tau181) cerebrospinal fluid (CSF) concentrations were evaluated. Tau positron emission tomography (PET) was collected in a substudy, and standard uptake value ratios (SUVRs) were calculated in a priori-defined composite regions of interest. Results: Of 102 participants assessed for eligibility, 46 participants with mild AD were enrolled; 23 (50%) were female, and mean (SD) age was 65.8 (5.70) years. BIIB080 was generally well tolerated and was associated with a dose-dependent reduction in CSF t-tau and p-tau181 in the MAD period (56% reduction; 95% CI, 50% to 62%; and 51% reduction; 95% CI, 38% to 63%, of CSF t-tau in the 2 higher-dose cohorts) that continued and/or was maintained through quarterly dosing in the LTE. Tau PET demonstrated reduced accumulation vs placebo at week 25 (n = 13). At week 100, tau PET showed a reduction from baseline across all regions assessed (n = 12), with the largest reductions from baseline observed in the temporal composite (-0.71 SUVR; 95% CI, -1.40 to -0.02). A moderate correlation was observed between model-predicted cumulative CSF drug exposure and tau PET change. Conclusions and Relevance: In this randomized clinical trial, BIIB080 reduced tau biomarkers, including CSF t-tau, CSF p-tau181, and tau PET, which is associated with cognitive decline, in participants with mild AD. Effects of BIIB080 on biomarkers and clinical outcomes are being further evaluated in a phase 2 trial. Trial Registration: ClinicalTrials.gov Identifier: NCT03186989.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Método Duplo-Cego , Peptídeos beta-Amiloides/líquido cefalorraquidiano
3.
N Engl J Med ; 387(5): 408-420, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35921450

RESUMO

BACKGROUND: Aggregated α-synuclein plays an important role in Parkinson's disease pathogenesis. Cinpanemab, a human-derived monoclonal antibody that binds to α-synuclein, is being evaluated as a disease-modifying treatment for Parkinson's disease. METHODS: In a 52-week, multicenter, double-blind, phase 2 trial, we randomly assigned, in a 2:1:2:2 ratio, participants with early Parkinson's disease to receive intravenous infusions of placebo (control) or cinpanemab at a dose of 250 mg, 1250 mg, or 3500 mg every 4 weeks, followed by an active-treatment dose-blinded extension period for up to 112 weeks. The primary end points were the changes from baseline in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) total score (range, 0 to 236, with higher scores indicating worse performance) at weeks 52 and 72. Secondary end points included MDS-UPDRS subscale scores and striatal binding as assessed on dopamine transporter single-photon-emission computed tomography (DaT-SPECT). RESULTS: Of the 357 enrolled participants, 100 were assigned to the control group, 55 to the 250-mg cinpanemab group, 102 to the 1250-mg group, and 100 to the 3500-mg group. The trial was stopped after the week 72 interim analysis owing to lack of efficacy. The change to week 52 in the MDS-UPDRS score was 10.8 points in the control group, 10.5 points in the 250-mg group, 11.3 points in the 1250-mg group, and 10.9 points in the 3500-mg group (adjusted mean difference vs. control, -0.3 points [95% confidence interval {CI}, -4.9 to 4.3], P = 0.90; 0.5 points [95% CI, -3.3 to 4.3], P = 0.80; and 0.1 point [95% CI, -3.8 to 4.0], P = 0.97, respectively). The adjusted mean difference at 72 weeks between participants who received cinpanemab through 72 weeks and the pooled group of those who started cinpanemab at 52 weeks was -0.9 points (95% CI, -5.6 to 3.8) for the 250-mg dose, 0.6 points (95% CI, -3.3 to 4.4) for the 1250-mg dose, and -0.8 points (95% CI, -4.6 to 3.0) for the 3500-mg dose. Results for secondary end points were similar to those for the primary end points. DaT-SPECT imaging at week 52 showed no differences between the control group and any cinpanemab group. The most common adverse events with cinpanemab were headache, nasopharyngitis, and falls. CONCLUSIONS: In participants with early Parkinson's disease, the effects of cinpanemab on clinical measures of disease progression and changes in DaT-SPECT imaging did not differ from those of placebo over a 52-week period. (Funded by Biogen; SPARK ClinicalTrials.gov number, NCT03318523.).


Assuntos
Anticorpos Monoclonais Humanizados , Antiparkinsonianos , Doença de Parkinson , alfa-Sinucleína , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antiparkinsonianos/efeitos adversos , Método Duplo-Cego , Humanos , Doença de Parkinson/tratamento farmacológico , Resultado do Tratamento , alfa-Sinucleína/imunologia
4.
NPJ Parkinsons Dis ; 8(1): 20, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241697

RESUMO

Non-manifesting carriers (NMCs) of Parkinson's disease (PD)-related mutations such as LRRK2 and GBA are at an increased risk for developing PD. Dopamine transporter (DaT)-spectral positron emission computed tomography is widely used for capturing functional nigrostriatal dopaminergic activity. However, it does not reflect other ongoing neuronal processes; especially in the prodromal stages of the disease. Resting-state fMRI (rs-fMRI) has been proposed as a mode for assessing functional alterations associated with PD, but its relation to dopaminergic deficiency remains unclear. We aimed to study the association between presynaptic striatal dopamine uptake and functional connectivity (FC) patterns among healthy first-degree relatives of PD patients with mutations in LRRK2 and GBA genes. N = 85 healthy first-degree subjects were enrolled and genotyped. All participants underwent DaT and rs-fMRI scans, as well as a comprehensive clinical assessment battery. Between-group differences in FC within striatal regions were investigated and compared with striatal binding ratios (SBR). N = 26 GBA-NMCs, N = 25 LRRK2-NMCs, and N = 34 age-matched nonmanifesting noncarriers (NM-NCs) were included in each study group based on genetic status. While genetically-defined groups were similar across clinical measures, LRRK2-NMCs demonstrated lower SBR in the right putamen compared with NM-NCs, and higher right putamen FC compared to GBA-NMCs. In this group, higher striatal FC was associated with increased risk for PD. The observed differential SBR and FC patterns among LRRK2-NMCs and GBA-NMCs indicate that DaTscan and FC assessments might offer a more sensitive prediction of the risk for PD in the pre-clinical stages of the disease.

5.
BMC Neurol ; 21(1): 459, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34814867

RESUMO

BACKGROUND: Dopamine transporter single-photon emission computed tomography (DaT-SPECT) can quantify the functional integrity of the dopaminergic nerve terminals and has been suggested as an imaging modality to verify the clinical diagnosis of Parkinson's disease (PD). Depending on the stage of progression, approximately 5-15% of participants clinically diagnosed with idiopathic PD have been observed in previous studies to have normal DaT-SPECT patterns. However, the utility of DaT-SPECT in enhancing early PD participant selection in a global, multicenter clinical trial of a potentially disease-modifying therapy is not well understood. METHODS: The SPARK clinical trial was a phase 2 trial of cinpanemab, a monoclonal antibody against alpha-synuclein, in participants with early PD. DaT-SPECT was performed at screening to select participants with DaT-SPECT patterns consistent with degenerative parkinsonism. Acquisition was harmonised across 82 sites. Images were reconstructed and qualitatively read at a central laboratory by blinded neuroradiologists for inclusion prior to automated quantitative analysis. RESULTS: In total, 482 unique participants were screened between January 2018 and May 2019; 3.8% (15/398) of imaged participants were excluded owing to negative DaT-SPECT findings (i.e., scans without evidence of dopaminergic deficit [SWEDD]). CONCLUSION: A smaller proportion of SPARK participants were excluded owing to SWEDD status upon DaT-SPECT screening than has been reported in prior studies. Further research is needed to understand the reasons for the low SWEDD rate in this study and whether these results are generalisable to future studies. If supported, the radiation risks, imaging costs, and operational burden of DaT-SPECT for enrichment may be mitigated by clinical assessment and other study design aspects. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03318523 . Date submitted: October 19, 2017. First Posted: October 24, 2017.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Doença de Parkinson , Biomarcadores , Dopamina , Humanos , Doença de Parkinson/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único
6.
PLoS One ; 16(8): e0254597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34358242

RESUMO

OBJECTIVE: T1-weighted MRI images are commonly used for volumetric assessment of brain structures. Magnetization prepared 2 rapid gradient echo (MP2RAGE) sequence offers superior gray (GM) and white matter (WM) contrast. This study aimed to quantitatively assess the agreement of whole brain tissue and deep GM (DGM) volumes obtained from MP2RAGE compared to the widely used MP-RAGE sequence. METHODS: Twenty-nine healthy participants were included in this study. All subjects underwent a 3T MRI scan acquiring high-resolution 3D MP-RAGE and MP2RAGE images. Twelve participants were re-scanned after one year. The whole brain, as well as DGM segmentation, was performed using CAT12, volBrain, and FSL-FAST automatic segmentation tools based on the acquired images. Finally, contrast-to-noise ratio between WM and GM (CNRWG), the agreement between the obtained tissue volumes, as well as scan-rescan variability of both sequences were explored. RESULTS: Significantly higher CNRWG was detected in MP2RAGE vs. MP-RAGE (Mean ± SD = 0.97 ± 0.04 vs. 0.8 ± 0.1 respectively; p<0.0001). Significantly higher total brain GM, and lower cerebrospinal fluid volumes were obtained from MP2RAGE vs. MP-RAGE based on all segmentation methods (p<0.05 in all cases). Whole-brain voxel-wise comparisons revealed higher GM tissue probability in the thalamus, putamen, caudate, lingual gyrus, and precentral gyrus based on MP2RAGE compared with MP-RAGE. Moreover, significantly higher WM probability was observed in the cerebellum, corpus callosum, and frontal-and-temporal regions in MP2RAGE vs. MP-RAGE. Finally, MP2RAGE showed a higher mean percentage of change in total brain GM compared to MP-RAGE. On the other hand, MP-RAGE demonstrated a higher overtime percentage of change in WM and DGM volumes compared to MP2RAGE. CONCLUSIONS: Due to its higher CNR, MP2RAGE resulted in reproducible brain tissue segmentation, and thus is a recommended method for volumetric imaging biomarkers for the monitoring of neurological diseases.


Assuntos
Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/ultraestrutura , Encéfalo/ultraestrutura , Mapeamento Encefálico , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/ultraestrutura , Líquido Cefalorraquidiano/metabolismo , Feminino , Substância Cinzenta/ultraestrutura , Voluntários Saudáveis , Hipocampo/diagnóstico por imagem , Hipocampo/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes , Tálamo/diagnóstico por imagem , Tálamo/ultraestrutura , Substância Branca/ultraestrutura
7.
J Neuroimaging ; 31(4): 751-757, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33886128

RESUMO

BACKGROUND AND PURPOSE: A prior study found a link between post-stroke blood-brain barrier disruption and functional outcomes. The current study aimed to replicate this finding in a cohort of patients recruited in the context of a randomized clinical trial. METHODS: The ACTION trial was a study of natalizumab in acute stroke patients. Patients with MRI-perfusion weighted imaging (PWI) were included in this post-hoc analysis. Blood-brain permeability images (BBPI) were calculated from the PWI source images. Mean BBPI values from the 24 h time point were compared with modified Rankin scores (mRS) at 5, 30, and 90-day assessments using linear regression. Good functional outcome (mRS< = 1) was compared with mean BBPI using logistic regression. RESULTS: One hundred and nineteen patients were included in the analysis (median age = 74, 43% female). Higher mean BBPI was associated with worse mRS at 5 days (p = 0.002; r2 = 0.078) and 30 days (p = 0.036; r2 = 0.039) but did not reach statistical significance at 90 days (p = 0.30; r2 = 0.010). When removing high-value outliers, all outcome measures showed a stronger relationship with mean BBPI. Logistic regression found that with every 1% increase in mean BBPI measured 24 h after the stroke, the likelihood of achieving a good functional outcome at 90 days is decreased by half (OR = 0.53; CI = 0.30:0.95; p = 0.032). CONCLUSIONS: With sufficient image quality, elevated BBPI measured in the days after an ischemic event is predictive of worse functional outcome and may serve as a biomarker for post-stroke inflammation.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Idoso , Barreira Hematoencefálica/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Feminino , Humanos , Isquemia , Imageamento por Ressonância Magnética , Masculino , Imagem de Perfusão , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Resultado do Tratamento
8.
Mov Disord ; 36(7): 1592-1602, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33751655

RESUMO

BACKGROUND: Development of reliable and accurate imaging biomarkers of dopaminergic cell neurodegeneration is necessary to facilitate therapeutic drug trials in Parkinson's disease (PD). Neuromelanin-sensitive MRI techniques have been effective in detecting neurodegeneration in the substantia nigra pars compacta (SNpc). The objective of the current study was to investigate longitudinal neuromelanin signal changes in the SNpc in PD patients. METHODS: In this prospective, longitudinal, observational case-control study, we included 140 PD patients and 64 healthy volunteers divided into 2 cohorts. Cohort I included 99 early PD patients (disease duration, 1.5 ± 1.0 years) and 41 healthy volunteers analyzed at baseline (V1), where 79 PD patients and 32 healthy volunteers were rescanned after 2.0 ± 0.2 years of follow-up (V2). Cohort II included 41 progressing PD patients (disease duration, 9.3 ± 3.7 years) and 23 healthy volunteers at V1, where 30 PD patients were rescanned after 2.4 ± 0.5 years of follow-up. Subjects were scanned at 3 T MRI using 3-dimensional T1-weighted and neuromelanin-sensitive imaging. Regions of interest were delineated manually to calculate SN volumes, volumes corrected by total intracranial volume, signal-to-noise ratio, and contrast-to-noise ratio. RESULTS: Results showed (1) significant reduction in volume and volume corrected by total intracranial volume between visits, greater in progressing PD than nonsignificant changes in healthy volunteers; (2) no significant effects of visit for signal intensity (signal-to-noise ratio); (3) significant interaction in volume between group and visit; (4) greater volume corrected by total intracranial volume at baseline in female patients and greater decrease in volume and increase in the contrast-to-noise ratio in progressing female PD patients compared with male patients; and (5) correlations between neuromelanin SN changes and disease severity and duration. CONCLUSIONS: We observed a progressive and measurable decrease in neuromelanin-based SN signal and volume in PD, which might allow a direct noninvasive assessment of progression of SN loss and could represent a target biomarker for disease-modifying treatments. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Melaninas , Doença de Parkinson/diagnóstico por imagem , Estudos Prospectivos , Substância Negra/diagnóstico por imagem
9.
Neuroimage ; 231: 117830, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549746

RESUMO

Changes in resting-state functional connectivity (rs-FC) under general anesthesia have been widely studied with the goal of identifying neural signatures of consciousness. This work has commonly revealed an apparent fragmentation of whole-brain network structure during unconsciousness, which has been interpreted as reflecting a break-down in connectivity and a disruption of the brain's ability to integrate information. Here we show, by studying rs-FC under varying depths of isoflurane-induced anesthesia in nonhuman primates, that this apparent fragmentation, rather than reflecting an actual change in network structure, can be simply explained as the result of a global reduction in FC. Specifically, by comparing the actual FC data to surrogate data sets that we derived to test competing hypotheses of how FC changes as a function of dose, we found that increases in whole-brain modularity and the number of network communities - considered hallmarks of fragmentation - are artifacts of constructing FC networks by thresholding based on correlation magnitude. Taken together, our findings suggest that deepening levels of unconsciousness are instead associated with the increasingly muted expression of functional networks, an observation that constrains current interpretations as to how anesthesia-induced FC changes map onto existing neurobiological theories of consciousness.


Assuntos
Anestesia Geral/métodos , Anestésicos Inalatórios/administração & dosagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Feminino , Macaca fascicularis , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/efeitos dos fármacos
10.
Cereb Cortex ; 30(10): 5229-5241, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32469053

RESUMO

General anesthetics are routinely used to induce unconsciousness, and much is known about their effects on receptor function and single neuron activity. Much less is known about how these local effects are manifest at the whole-brain level nor how they influence network dynamics, especially past the point of induced unconsciousness. Using resting-state functional magnetic resonance imaging (fMRI) with nonhuman primates, we investigated the dose-dependent effects of anesthesia on whole-brain temporal modular structure, following loss of consciousness. We found that higher isoflurane dose was associated with an increase in both the number and isolation of whole-brain modules, as well as an increase in the uncoordinated movement of brain regions between those modules. Conversely, we found that higher dose was associated with a decrease in the cohesive movement of brain regions between modules, as well as a decrease in the proportion of modules in which brain regions participated. Moreover, higher dose was associated with a decrease in the overall integrity of networks derived from the temporal modules, with the exception of a single, sensory-motor network. Together, these findings suggest that anesthesia-induced unconsciousness results from the hierarchical fragmentation of dynamic whole-brain network structure, leading to the discoordination of temporal interactions between cortical modules.


Assuntos
Encéfalo/fisiopatologia , Estado de Consciência/fisiologia , Isoflurano/farmacologia , Inconsciência/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Estado de Consciência/efeitos dos fármacos , Haplorrinos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Descanso/fisiologia , Inconsciência/induzido quimicamente
11.
Neuropsychopharmacology ; 44(9): 1604-1612, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31035283

RESUMO

Clinical depression commonly emerges in adolescence, which is also a time of developing cognitive ability and related large-scale functional brain networks implicated in depression. In depressed adults, abnormalities in the dynamic functioning of frontoinsular networks, in particular, have been observed and linked to negative rumination. Thus, network dynamics may provide new insight into teen pathophysiology. Here, adolescents (n = 45, ages 13-19) with varying severity of depressive symptoms completed a resting-state functional MRI scan. Functional networks were evaluated using co-activation pattern analysis to identify whole-brain states of spatial co-activation that recurred across participants and time. Measures included: dwell time (proportion of scan spent in that network state), persistence (volume-to-volume maintenance of a network state), and transitions (frequency of moving from state A to state B). Analyses tested associations between depression or trait rumination and dynamics of network states involving frontoinsular and default network systems. Results indicated that adolescents showing increased dwell time in, and persistence of, a frontoinsular-default network state involving insula, dorsolateral and medial prefrontal cortex, and posterior regions of default network, reported more severe symptoms of depression. Further, adolescents who transitioned more frequently between the frontoinsular-default state and a prototypical default network state reported higher depression. Increased dominance and transition frequency of frontoinsular-default network states were also associated with higher rumination, and rumination mediated the associations between network dynamics and depression. Findings support a model in which abnormal frontoinsular dynamics confer vulnerability to maladaptive introspection, which in turn contributes to symptoms of adolescent depression.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Depressão/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Ruminação Cognitiva , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Córtex Cerebral/fisiopatologia , Depressão/fisiopatologia , Depressão/psicologia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Feminino , Lobo Frontal/fisiopatologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Descanso , Adulto Jovem
12.
Neurobiol Aging ; 74: 191-201, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471630

RESUMO

Amyloid beta (Aß) deposition and cognitive decline are key features of Alzheimer's disease. The relationship between Aß status and changes in neuronal function over time, however, remains unclear. We evaluated the effect of baseline Aß status on reference region spontaneous brain activity (SBA-rr) using resting-state functional magnetic resonance imaging and fluorodeoxyglucose positron emission tomography in patients with mild cognitive impairment. Patients (N = 62, [43 Aß-positive]) from the Alzheimer's Disease Neuroimaging Initiative were divided into Aß-positive and Aß-negative groups via prespecified cerebrospinal fluid Aß42 or 18F-florbetapir positron emission tomography standardized uptake value ratio cutoffs measured at baseline. We analyzed interaction of biomarker-confirmed Aß status with SBA-rr change over a 2-year period using mixed-effects modeling. SBA-rr differences between Aß-positive and Aß-negative subjects increased significantly over time within subsystems of the default and visual networks. Changes exhibit an interaction with memory performance over time but were independent of glucose metabolism. Results reinforce the value of resting-state functional magnetic resonance imaging in evaluating Alzheimer''s disease progression and suggest spontaneous neuronal activity changes are concomitant with cognitive decline.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Idoso , Doença de Alzheimer/fisiopatologia , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória , Pessoa de Meia-Idade , Neuroimagem , Neurônios/fisiologia , Tomografia por Emissão de Pósitrons
13.
Nat Commun ; 9(1): 1157, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559638

RESUMO

Higher-order cognition emerges through the flexible interactions of large-scale brain networks, an aspect of temporal coordination that may be impaired in psychosis. Here, we map the dynamic functional architecture of the cerebral cortex in healthy young adults, leveraging this atlas of transient network configurations (states), to identify state- and network-specific disruptions in patients with schizophrenia and psychotic bipolar disorder. We demonstrate that dynamic connectivity profiles are reliable within participants, and can act as a fingerprint, identifying specific individuals within a larger group. Patients with psychotic illness exhibit intermittent disruptions within cortical networks previously associated with the disease, and the individual connectivity profiles within specific brain states predict the presence of active psychotic symptoms. Taken together, these results provide evidence for a reconfigurable dynamic architecture in the general population and suggest that prior reports of network disruptions in psychosis may reflect symptom-relevant transient abnormalities, rather than a time-invariant global deficit.


Assuntos
Transtorno Bipolar/fisiopatologia , Córtex Cerebral/fisiopatologia , Esquizofrenia/fisiopatologia , Adolescente , Adulto , Transtorno Bipolar/diagnóstico por imagem , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Cognição , Feminino , Humanos , Masculino , Vias Neurais , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
14.
Cortex ; 98: 8-27, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890325

RESUMO

Several lines of evidence point to areas in the occipitotemporal pathway as being critical in the processes of visual perception and object recognition. Much less appreciated, however, is the role that this pathway plays in object-related processing for the purposes of visually guided action. Here, using functional MRI (fMRI) and functional connectivity (FC) measures, we examined interactions between areas in frontoparietal cortex (FPC) involved in grasping, reaching, eye movements, and tool use and areas in occipitotemporal cortex (OTC) involved in object-, face-, scene-, body-, tool-, and motion-related processing, both during the performance of sensorimotor and visual-perceptual tasks, as well as during passive fixation (resting-state). Cluster analysis of regional time course data identified correspondence in the patterns of FPC and OTC connectivity during the visual-perceptual tasks and rest that both tended to segregate regions along traditional dorsal/ventral pathway boundaries. During the sensorimotor tasks, however, we observed a notable separation in functional coupling between ventral-medial and ventral-lateral regions of OTC, with several of the latter areas often being clustered together with sensorimotor-defined areas in parietal cortex. These findings indicate that the functional coupling of ventral-lateral OTC areas to dorsal parietal and ventral-medial structures is flexible and task-dependent, and suggests that regions in lateral occipital cortex, in particular, may play an important role in mediating interactions between the dorsal and ventral pathways during tasks involving sensorimotor control.


Assuntos
Córtex Cerebral/fisiologia , Desempenho Psicomotor/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Reconhecimento Psicológico/fisiologia , Vias Visuais/diagnóstico por imagem , Adulto Jovem
16.
Cereb Cortex ; 27(8): 3890-3905, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27405331

RESUMO

In contrast to the well established macaque monkey, little is known about functional connectivity patterns of common marmoset monkey (Callithrix jacchus) that is poised to become the leading transgenic primate model. Here, we used resting-state ultra-high-field fMRI data collected from anesthetized marmosets and macaques along with awake human subjects, to examine and compare the brain's functional organization, with emphasis on the saccade system. Exploratory independent component analysis revealed eight resting-state networks in marmosets that greatly overlapped with corresponding macaque and human networks including a distributed frontoparietal network. Seed-region analyses of the superior colliculus (SC) showed homolog areas in macaques and marmosets. The marmoset SC displayed the strongest frontal functional connectivity with area 8aD at the border to area 6DR. Functional connectivity of this frontal region revealed a similar functional connectivity pattern as the frontal eye fields in macaques and humans. Furthermore, areas 8aD, 8aV, PG,TPO, TE2, and TE3 were identified as major hubs based on region-wise evaluation of betweeness centrality, suggesting that these cortical regions make up the functional core of the marmoset brain. The results support an evolutionarily preserved frontoparietal system and provide a starting point for invasive neurophysiological studies in the marmoset saccade and visual systems.


Assuntos
Encéfalo/fisiologia , Callithrix/fisiologia , Adulto , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Macaca/fisiologia , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso
17.
J Neurophysiol ; 117(3): 1084-1099, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003408

RESUMO

Investigations of the cellular and connectional organization of the lateral frontal cortex (LFC) of the macaque monkey provide indispensable knowledge for generating hypotheses about the human LFC. However, despite numerous investigations, there are still debates on the organization of this brain region. In vivo neuroimaging techniques such as resting-state functional magnetic resonance imaging (fMRI) can be used to define the functional circuitry of brain areas, producing results largely consistent with gold-standard invasive tract-tracing techniques and offering the opportunity for cross-species comparisons within the same modality. Our results using resting-state fMRI from macaque monkeys to uncover the intrinsic functional architecture of the LFC corroborate previous findings and inform current debates. Specifically, within the dorsal LFC, we show that 1) the region along the midline and anterior to the superior arcuate sulcus is divided in two areas separated by the posterior supraprincipal dimple, 2) the cytoarchitectonically defined area 6DC/F2 contains two connectional divisions, and 3) a distinct area occupies the cortex around the spur of the arcuate sulcus, updating what was previously proposed to be the border between dorsal and ventral motor/premotor areas. Within the ventral LFC, the derived parcellation clearly suggests the presence of distinct areas: 1) an area with a somatomotor/orofacial connectional signature (putative area 44), 2) an area with an oculomotor connectional signature (putative frontal eye fields), and 3) premotor areas possibly hosting laryngeal and arm representations. Our results illustrate in detail the intrinsic functional architecture of the macaque LFC, thus providing valuable evidence for debates on its organization.NEW & NOTEWORTHY Resting-state functional MRI is used as a complementary method to invasive techniques to inform current debates on the organization of the macaque lateral frontal cortex. Given that the macaque cortex serves as a model for the human cortex, our results help generate more fine-tuned hypothesis for the organization of the human lateral frontal cortex.


Assuntos
Lobo Frontal/fisiologia , Animais , Mapeamento Encefálico , Macaca , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia
18.
Cereb Cortex ; 27(3): 1831-1840, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874182

RESUMO

Human attention is intrinsically dynamic, with focus continuously shifting between elements of the external world and internal, self-generated thoughts. Communication within and between large-scale brain networks also fluctuates spontaneously from moment to moment. However, the behavioral relevance of dynamic functional connectivity and possible link with attentional state shifts is unknown. We used a unique approach to examine whether brain network dynamics reflect spontaneous fluctuations in moment-to-moment behavioral variability, a sensitive marker of attentional state. Nineteen healthy adults were instructed to tap their finger every 600 ms while undergoing fMRI. This novel, but simple, approach allowed us to isolate moment-to-moment fluctuations in behavioral variability related to attention, independent of common confounds in cognitive tasks (e.g., stimulus changes, response inhibition). Spontaneously increasing tap variance ("out-of-the-zone" attention) was associated with increasing activation in dorsal-attention and salience network regions, whereas decreasing tap variance ("in-the-zone" attention) was marked by increasing activation of default mode network (DMN) regions. Independent of activation, tap variance representing out-of-the-zone attention was also time-locked to connectivity both within DMN and between DMN and salience network regions. These results provide novel mechanistic data on the understudied neural dynamics of everyday, moment-to-moment attentional fluctuations, elucidating the behavioral importance of spontaneous, transient coupling within and between attention-relevant networks.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Destreza Motora/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Dedos/fisiologia , Humanos , Inibição Psicológica , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Testes Neuropsicológicos , Descanso , Adulto Jovem
19.
Cereb Cortex ; 27(5): 2894-2910, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226439

RESUMO

Communication between cortical regions is necessary for optimal cognitive processing. Functional relationships between cortical regions can be inferred through measurements of temporal synchrony in spontaneous activity patterns. These relationships can be further elaborated by surveying effects of cortical lesions upon inter-regional connectivity. Lesions to cortical hubs and heteromodal association regions are expected to induce distributed connectivity changes and higher-order cognitive deficits, yet their functional consequences remain relatively unexplored. Here, we used resting-state fMRI to investigate intrinsic functional connectivity (FC) and graph theoretical metrics in 12 patients with circumscribed lesions of the medial prefrontal cortex (mPFC) portion of the Default Network (DN), and compared these metrics with those observed in healthy matched comparison participants and a sample of 1139 healthy individuals. Despite significant mPFC destruction, patients did not demonstrate weakened intrinsic FC among undamaged DN nodes. Instead, network-specific changes were manifested as weaker negative correlations between the DN and attentional and somatomotor networks. These findings conflict with the DN being a homogenous system functionally anchored at mPFC. Rather, they implicate a role for mPFC in mediating cross-network functional interactions. More broadly, our data suggest that lesions to association cortical hubs might induce clinical deficits by disrupting communication between interacting large-scale systems.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Mapeamento Encefálico , Modelos Neurológicos , Rede Nervosa/patologia , Vias Neurais/fisiopatologia , Adulto , Idoso , Lesões Encefálicas/diagnóstico por imagem , Feminino , Mãos/fisiopatologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Adulto Jovem
20.
Gigascience ; 5: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042293

RESUMO

Brainhack events offer a novel workshop format with participant-generated content that caters to the rapidly growing open neuroscience community. Including components from hackathons and unconferences, as well as parallel educational sessions, Brainhack fosters novel collaborations around the interests of its attendees. Here we provide an overview of its structure, past events, and example projects. Additionally, we outline current innovations such as regional events and post-conference publications. Through introducing Brainhack to the wider neuroscience community, we hope to provide a unique conference format that promotes the features of collaborative, open science.


Assuntos
Pesquisa Biomédica/métodos , Encéfalo/fisiologia , Educação/métodos , Neurociências/métodos , Pesquisa Biomédica/educação , Encéfalo/anatomia & histologia , Biologia Computacional/educação , Biologia Computacional/métodos , Congressos como Assunto/organização & administração , Congressos como Assunto/estatística & dados numéricos , Comportamento Cooperativo , Educação/organização & administração , Humanos , Cooperação Internacional , Neurociências/educação , Pesquisadores/educação , Pesquisadores/organização & administração , Pesquisadores/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...