Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(15): 7007-7018, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557070

RESUMO

Double perovskite oxides, characterized by their tunable magnetic properties and robust interconnection between the lattice and magnetic degrees of freedom, present an enticing foundation for advanced magnetic refrigeration materials. Herein, we delve into the influence of rare-earth elements on RSrCoFeO6 (R = Sm, Eu) disordered double perovskites by examining their structural, electronic, magnetic, and magnetocaloric properties. Temperature-dependent synchrotron X-ray diffraction analysis confirmed the stability of the orthorhombic phase (Pnma) across a wide temperature range. X-ray photoemission spectroscopy revealed that both Sm and Eu are in the 3+ state, whereas multiple states for Co2+/3+ and Fe3+/4+ are identified. The magnetic investigation and magnetocaloric effect (MCE) analysis brought to light the presence of a long-range antiferromagnetic (AFM) order with a second-order phase transition (SOPT) in both samples. The maximum magnetic entropy change ΔSMmax was approximately 0.9 J/kg K for both samples at applied field 0-7 T, manifesting prominently above Neel temperatures TN ≈ 93 K (Sm) and 84 K (Eu). Nevertheless, different relative cooling powers (RCP) of 112.6 J/kg (Sm) and 95.5 J/kg (Eu) were observed. A detailed analysis of the temperature-dependent lattice parameters shed light on a distinct magnetocaloric effect across the magnetic transition temperature, unveiling an anisotropic thermal expansion [αV = 1.41 × 10-5 K-1 (Sm) and αV = 1.54 × 10-5 K-1 (Eu)] wherein the thermal expansion axial ratio αbSm/αbEu = 0.61 became lower with increasing temperature, which suggests that the Eu sample experiences a greater thermal expansion in the b-axis direction. At the atomic bonding level, the evidence for magnetoelastic coupling around the magnetic transition temperatures TN was found through the anomalies along the average Co/Fe-O bond distance, formal valence, octahedral distortion, as well as an anisotropic lattice expansion.

2.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269267

RESUMO

Nanostructured silver (Ag) and gold (Au) are widely known to be potent biocidal and cytotoxic agents as well as biocompatible nanomaterials. It has been recently reported that combining both metals in a specific chemical composition causes a significant enhancement in their antibacterial activity against antibiotic-resistant bacterial strains, as well as in their anticancer effects, while preserving cytocompatibility properties. In this work, Ag/Au bimetallic nanoparticles over a complete atomic chemical composition range were prepared at 10 at% through a green, highly reproducible, and simple approach using starch as a unique reducing and capping agent. The noble metal nanosystems were thoroughly characterized by different analytical techniques, including UV-visible and FT-IR spectroscopies, XRD, TEM/EDS, XPS and ICP-MS. Moreover, absorption spectra simulations for representative colloidal Ag/Au-NP samples were conducted using FDTD modelling. The antibacterial properties of the bimetallic nanoparticles were determined against multidrug-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus, showing a clear dose-dependent inhibition even at the lowest concentration tested (5 µg/mL). Cytocompatibility assays showed a medium range of toxicity at low and intermediate concentrations (5 and 10 µg/mL), while triggering an anticancer behavior, even at the lowest concentration tested, in a process involving reactive oxygen species production per the nanoparticle Au:Ag ratio. In this manner, this study provides promising evidence that the presently fabricated Ag/Au-NPs should be further studied for a wide range of antibacterial and anticancer applications.

3.
ACS Appl Mater Interfaces ; 13(42): 50531-50538, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641675

RESUMO

We present a study of the effect of gold nanoparticles (Au NPs) on TiO2 on charge generation and trapping during illumination with photons of energy larger than the substrate band gap. We used a novel characterization technique, photoassisted Kelvin probe force microscopy, to study the process at the single Au NP level. We found that the photoinduced electron transfer from TiO2 to the Au NP increases logarithmically with light intensity due to the combined contribution of electron-hole pair generation in the space charge region in the TiO2-air interface and in the metal-semiconductor junction. Our measurements on single particles provide direct evidence for electron trapping that hinders electron-hole recombination, a key factor in the enhancement of photo(electro)catalytic activity.

4.
RSC Adv ; 11(23): 13711-13721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257952

RESUMO

Glucose determination is an essential procedure in different fields, used in clinical analysis for the prevention and monitoring of diabetes. In this work, modified carbon paste electrodes with Cu2O nanocubes (Cu2O NCs) were developed to test electrochemical glucose detection. The synthesis of the Cu2O NCs was achieved by a green method using starch as the capping agent, obtaining cubic-like morphologies and particle sizes from 227 to 123 nm with increasing amounts of the capping agent, as corroborated by electron microscopy analysis. Their crystalline structure and purity were determined by X-ray diffraction. The capability of starch as a capping agent was verified by Fourier-transform infrared spectroscopy, in which the presence of functional groups of this biopolymer in the Cu2O NCs were identified. The electrochemical response to glucose oxidation was determined by cyclic voltammetry, obtaining a linear response of the electrical current as a function of glucose concentration in the range 100-700 µM, with sensitivities from 85.6 to 238.8 µA mM-1 cm-2, depending on the amount of starch used in the synthesis of the Cu2O NCs.

5.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670538

RESUMO

Cancer and antimicrobial resistance to antibiotics are two of the most worrying healthcare concerns that humanity is facing nowadays. Some of the most promising solutions for these healthcare problems may come from nanomedicine. While the traditional synthesis of nanomaterials is often accompanied by drawbacks such as high cost or the production of toxic by-products, green nanotechnology has been presented as a suitable solution to overcome such challenges. In this work, an approach for the synthesis of tellurium (Te) nanostructures in aqueous media has been developed using aloe vera (AV) extracts as a unique reducing and capping agent. Te-based nanoparticles (AV-TeNPs), with sizes between 20 and 60 nm, were characterized in terms of physicochemical properties and tested for potential biomedical applications. A significant decay in bacterial growth after 24 h was achieved for both Methicillin-resistant Staphylococcus aureus and multidrug-resistant Escherichia coli at a relative low concentration of 5 µg/mL, while there was no cytotoxicity towards human dermal fibroblasts after 3 days of treatment. AV-TeNPs also showed anticancer properties up to 72 h within a range of concentrations between 5 and 100 µg/mL. Consequently, here, we present a novel and green approach to produce Te-based nanostructures with potential biomedical applications, especially for antibacterial and anticancer applications.

6.
J Phys Chem C Nanomater Interfaces ; 124(44): 24441-24450, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33193943

RESUMO

Spontaneous growth of complexes consisted of a number of individual nanoparticles in a controlled manner, particularly in demanding environments of gas-phase synthesis, is a fascinating opportunity for numerous potential applications. Here, we report the formation of such core-satellite gold nanoparticle structures grown by magnetron sputtering inert gas condensation. Combining high-resolution scanning transmission electron microscopy and computational simulations, we reveal the adhesive and screening role of H2O molecules in formation of stable complexes consisted of one nanoparticle surrounded by smaller satellites. A single layer of H2O molecules, condensed between large and small gold nanoparticles, stabilizes positioning of nanoparticles with respect to one another during milliseconds of the synthesis time. The lack of isolated small gold nanoparticles on the substrate is explained by Brownian motion that is significantly broader for small-size particles. It is inferred that H2O as an admixture in the inert gas condensation opens up possibilities of controlling the final configuration of the different noble metal nanoparticles.

7.
J Phys Chem C Nanomater Interfaces ; 124(43): 23683-23689, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33154785

RESUMO

State-of-the-art electrocatalysts for electrolyzer and fuel cell applications currently rely on platinum group metals, which are costly and subject to supply risks. In recent years, a vast collection of research has explored the possibility of reducing the Pt content in such catalysts by alloying with earth-abundant and cheap metals, enabling co-optimization of cost and activity. Here, using nanoparticle beam deposition, we explore the electrocatalytic performance of PtCu alloy clusters in the hydrogen evolution reaction (HER). Elemental compositions of the produced bimetallic clusters were shown by X-ray photoelectron spectroscopy (XPS) to range from 2 at. % to 38 at. % Pt, while high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) combined with energy dispersive X-ray (EDX) spectroscopy indicated that the predominant cluster morphologies could be characterized as either a fully mixed alloy or as a mixed core with a Cu-rich shell. In contrast with previous studies, a monotonic decrease in HER activity with increasing Cu content was observed over the composition range studied, with the current density measured at -0.3 V (vs reversible hydrogen electrode) scaling approximately linearly with Pt at. %. This trend opens up the possibility that PtCu could be used as a reference system for comparing the composition-dependent activity of other bimetallic catalysts.

8.
Inorg Chem ; 59(20): 14932-14943, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33006896

RESUMO

Black phosphorus (BP) allotrope has an orthorhombic crystal structure with a narrow bandgap of 0.35 eV. This material is promising for 2D technology since it can be exfoliated down to one single layer: the well-known phosphorene. In this work, bulk BP was synthesized under high-pressure conditions at high temperatures. A detailed structural investigation using neutron and synchrotron X-ray diffraction revealed the occurrence of anisotropic strain effects on the BP lattice; the combination of both sets of diffraction data allowed visualization of the lone electron pair 3s2. Temperature-dependent neutron diffraction data collected at low temperature showed that the a axis (zigzag) exhibits a quasi-temperature-independent thermal expansion in the temperature interval from 20 up to 150 K. These results may be a key to address the anomalous behavior in electrical resistivity near 150 K. Thermoelectric properties were also provided; low thermal conductivity from 14 down to 6 Wm-1K-1 in the range 323-673 K was recorded in our polycrystalline BP, which is below the reported values for single-crystals in literature.

9.
Green Chem ; 21(8): 1982-1988, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31156349

RESUMO

Bacterial infections and cancer are two of the most significant concerns that the current healthcare system should tackle nowadays. Green nanotechnology is presented as a feasible solution that is able to produce materials with significant anticancer and antibacterial activity, while overcoming the main limitations of traditional synthesis. In the present work, orange, lemon and lime extracts were used as both reducing and capping agents for the green synthesis of tellurium nanoparticles (TeNPs) using a microwave-assisted reaction. TeNPs showed a uniform size distribution, and rod- and cubic-shapes, and were extensively characterized in terms of morphology, structure and composition using TEM, SEM, XPS, XRD, FTIR and EDX analysis. TeNPs showed an important antibacterial activity against both Gram-negative and -positive bacteria in a range concentrations from 5 to 50 µg/mL over a 24-hour time period. Besides, nanoparticles showed anticancer effect towards human melanoma cells over 48 hours at concentrations up to 50 µg/mL. Moreover, the Te nanostructures showed no significant cytotoxic effect towards human dermal fibroblast at concentrations up to 50 µg/mL. Therefore, we present an environmentally-friendly and cost-effective synthesis of TeNPs using only fruit juices and showing enhanced and desirable biomedical properties towards both infectious diseases and cancer.

10.
Int J Nanomedicine ; 14: 3155-3176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118629

RESUMO

BACKGROUND: Traditional physicochemical approaches for the synthesis of compounds, drugs, and nanostructures developed as potential solutions for antimicrobial resistance or against cancer treatment are, for the most part, facile and straightforward. Nevertheless, these approaches have several limitations, such as the use of toxic chemicals and production of toxic by-products with limited biocompatibility. Therefore, new methods are needed to address these limitations, and green chemistry offers a suitable and novel answer, with the safe and environmentally friendly design, manufacturing, and use of minimally toxic chemicals. Green chemistry approaches are especially useful for the generation of metallic nanoparticles or nanometric structures that can effectively and efficiently address health care concerns. OBJECTIVE: Here, tellurium (Te) nanowires were synthesized using a novel green chemistry approach, and their structures and cytocompatibility were evaluated. METHOD: An easy and straightforward hydrothermal method was employed, and the Te nanowires were characterized using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and optical microscopy for morphology, size, and chemistry. Cytotoxicity tests were performed with human dermal fibroblasts and human melanoma cells (to assess anticancer properties). The results showed that a treatment with Te nanowires at concentrations between 5 and 100 µg/mL improved the proliferation of healthy cells and decreased cancerous cell growth over a 5-day period. Most importantly, the green chemistry -synthesized Te nanowires outperformed those produced by traditional synthetic chemical methods. CONCLUSION: This study suggests that green chemistry approaches for producing Te nanostructures may not only reduce adverse environmental effects resulting from traditional synthetic chemistry methods, but also be more effective in numerous health care applications.


Assuntos
Antineoplásicos/farmacologia , Química Verde/métodos , Nanopartículas Metálicas/química , Nanofios/química , Telúrio/química , Morte Celular , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Humanos , Concentração Inibidora 50 , Melanoma/patologia , Melanoma/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Nanofios/ultraestrutura , Espectroscopia Fotoeletrônica , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
ACS Omega ; 4(2): 3287-3297, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31008418

RESUMO

Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multitechnique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.

12.
Nanomedicine ; 17: 36-46, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30654187

RESUMO

Nanocolumnar titanium coatings have been fabricated in two sputtering systems with very different characteristics (a laboratory setup and semi-industrial equipment), thus possessing different morphologies (150 nm long columns tilted 20° from the normal and 300 nm long ones tilted 40°, respectively). These coatings exhibit similar antibacterial properties against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacteria. When a synergic route is followed and these coatings are functionalized with tellurium (Te) nanorods, the antibacterial properties are enhanced, especially for the long nanocolumns case. The biocompatibility is preserved in all the nanostructured coatings.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Telúrio/farmacologia , Titânio/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Humanos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Telúrio/química , Titânio/química
13.
Nanoscale ; 10(26): 12779-12787, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29946620

RESUMO

Direct graphene growth on silicon with a native oxide using plasma enhanced chemical vapour deposition at low temperatures [550 °C-650 °C] is demonstrated for the first time. It is shown that the fine-tuning of a two-step synthesis with gas mixtures C2H2/H2 yields monolayer and few layer graphene films with a controllable domain size from 50 nm to more than 300 nm and the sheet resistance ranging from 8 kΩ sq-1 to less than 1.8 kΩ sq-1. Differences are understood in terms of the interaction of the plasma species - chiefly atomic H - with the deposited graphene and the native oxide layer. The proposed low temperature direct synthesis on an insulating substrate does not require any transfer processes and improves the compatibility with the current industrial processes.

14.
Chem Commun (Camb) ; 51(40): 8442-5, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25719945

RESUMO

Core@shell Co@Au nanoparticles of around 8 nm have been produced by the inert gas condensation method, revealing for the first time that most of the nanoparticles exhibit an icosahedral shape in agreement with the theoretical prediction. Additionally, we report the existence of a novel morphology which consists of a Co icosahedron surrounded by fcc Au facets, reported here for the first time.

15.
Eur Biophys J ; 39(10): 1433-44, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20358368

RESUMO

A detailed study of the immobilization of three differently sulfur-modified DNA receptors for biosensing applications is presented. The three receptors are DNA-(CH)n-SH-, DNA-(CH)n-SS-(CH)n-DNA, and DNA-(CH)n-SS-DMTO. Nanomechanical and surface plasmon resonance biosensors and fluorescence and radiolabelling techniques were used for the experimental evaluation. The results highlight the critical role of sulfur linker type in DNA self-assembly, affecting the kinetic adsorption and spatial distribution of DNA chains within the monolayer and the extent of chemisorption and physisorption. A spacer (mercaptohexanol, MCH) is used to evaluate the relative efficiencies of chemisorption of the three receptors by analysing the extent to which MCH can remove physisorbed molecules from each type of monolayer. It is demonstrated that -SH derivatization is the most suitable for biosensing purposes as it results in densely packed monolayers with the lowest ratio of physisorbed probes.


Assuntos
Técnicas Biossensoriais , DNA/química , Dissulfetos/química , Receptores de Superfície Celular/química , Compostos de Sulfidrila/química , Adsorção , Sequência de Bases , DNA/metabolismo , Dissulfetos/metabolismo , Fluorescência , Hexanóis/química , Hexanóis/metabolismo , Cinética , Espectroscopia Fotoeletrônica , Receptores de Superfície Celular/metabolismo , Compostos de Sulfidrila/metabolismo , Ressonância de Plasmônio de Superfície
16.
Phys Chem Chem Phys ; 12(13): 3301-8, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20237723

RESUMO

We investigate the Au-S binding properties of thiol and disulfide-modified DNA on polycrystalline gold by means of X-ray photoelectron spectroscopy in conditions close to dynamic processes of biosensors. The dependence of the immobilisation period on the quality and density of the self-assembly process of thiol (SH-(CH(2))(6)-DNA), disulfide (DNA-CH(2))(6)-SS-(CH(2))(6)-DNA and DMTO-SS-(CH(2))(6)-DNA) sulfur-modified oligonucleotide solutions (1 microM) that are employed for bioreceptor immobilisation is analysed. Two electronic components are found in the analysis of the S 2p core levels. One of them is clearly associated to thiolate formation, while the other can be associated to different origins. In order to identify the origin of this last component, a quantification of the non-specifically adsorbed species has been performed by rinsing the self-assembled monolayers (SAMs) with a mercapto hexanol (MCH) solution. It has been found that non-specifically adsorbed species contribute only partially to the appearance of this sulfur peak component in SAMs formed from disulfides. Electron bombardment was performed to study the evolution of this component as a consequence of surface degradation due to radiation effects. The results are also correlated with the possible presence of disulfides. We found that MCH is not stable during the measurements. The evolution of this compound and the possible causes for this behaviour are discussed.


Assuntos
DNA/química , Dissulfetos/química , Ouro/química , Compostos de Sulfidrila/química , Hexanóis/química , Oligonucleotídeos/química , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...