Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Trials ; 25(1): 164, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439024

RESUMO

BACKGROUND: Mortality, cerebral injury, and necrotizing enterocolitis (NEC) are common complications of very preterm birth. An important risk factor for these complications is hemodynamic instability. Pre-clinical studies suggest that the timing of umbilical cord clamping affects hemodynamic stability during transition. Standard care is time-based cord clamping (TBCC), with clamping irrespective of lung aeration. It is unknown whether delaying cord clamping until lung aeration and ventilation have been established (physiological-based cord clamping, PBCC) is more beneficial. This document describes the statistical analyses for the ABC3 trial, which aims to assess the efficacy and safety of PBCC, compared to TBCC. METHODS: The ABC3 trial is a multicenter, randomized trial investigating PBCC (intervention) versus TBCC (control) in very preterm infants. The trial is ethically approved. Preterm infants born before 30 weeks of gestation are randomized after parental informed consent. The primary outcome is intact survival, defined as the composite of survival without major cerebral injury and/or NEC. Secondary short-term outcomes are co-morbidities and adverse events assessed during NICU admission, parental reported outcomes, and long-term neurodevelopmental outcomes assessed at a corrected age of 2 years. To test the hypothesis that PBCC increases intact survival, a logistic regression model will be estimated using generalized estimating equations (accounting for correlation between siblings and observations in the same center) with treatment and gestational age as predictors. This plan is written and submitted without knowledge of the data. DISCUSSION: The findings of this trial will provide evidence for future clinical guidelines on optimal cord clamping management at birth. TRIAL REGISTRATION: ClinicalTrials.gov NCT03808051. Registered on 17 January 2019.


Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Lactente , Feminino , Recém-Nascido , Humanos , Pré-Escolar , Constrição , Recém-Nascido de muito Baixo Peso , Respiração
3.
Arch Dis Child Fetal Neonatal Ed ; 109(2): 221-226, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-37827816

RESUMO

OBJECTIVE: This randomised study in preterm infants on non-invasive respiratory support investigated the effectiveness of automated oxygen control (A-FiO2) in keeping the oxygen saturation (SpO2) within a target range (TR) during a 28-day period compared with manual titration (M-FiO2). DESIGN: A single-centre randomised control trial. SETTING: A level III neonatal intensive care unit. PATIENTS: Preterm infants (<28 weeks' gestation) on non-invasive respiratory support. INTERVENTIONS: A-FiO2 versus M-FiO2 control. METHODS: Main outcomes were the proportion of time spent and median area of episodes in the TR, hyperoxaemia, hypoxaemia and the trend over 28 days using a linear random intercept model. RESULTS: 23 preterm infants (median gestation 25.7 weeks; birth weight 820 g) were randomised. Compared with M-FiO2, the time spent within TR was higher in the A-FiO2 group (68.7% vs 48.0%, p<0.001). Infants in the A-FiO2 group spent less time in hyperoxaemia (13.8% vs 37.7%, p<0.001), but no difference was found in hypoxaemia. The time-based analyses showed that the A-FiO2 efficacy may differ over time, especially for hypoxaemia. Compared with the M-FiO2 group, the A-FiO2 group had a larger intercept but with an inversed slope for the daily median area below the TR (intercept 70.1 vs 36.3; estimate/day -0.70 vs 0.69, p<0.001). CONCLUSION: A-FiO2 control was superior to manual control in keeping preterm infants on non-invasive respiratory support in a prespecified TR over a period of 28 days. This improvement may come at the expense of increased time below the TR in the first days after initiating A-FiO2 control. TRIAL REGISTRATION NUMBER: NTR6731.


Assuntos
Recém-Nascido Prematuro , Oxigênio , Lactente , Recém-Nascido , Humanos , Estudos Cross-Over , Peso ao Nascer , Hipóxia/prevenção & controle
4.
Trials ; 24(1): 656, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817255

RESUMO

BACKGROUND: Apnoea of prematurity (AOP) is one of the most common diagnoses among preterm infants. AOP often leads to hypoxemia and bradycardia which are associated with an increased risk of death or disability. In addition to caffeine therapy and non-invasive respiratory support, doxapram might be used to reduce hypoxemic episodes and the need for invasive mechanical ventilation in preterm infants, thereby possibly improving their long-term outcome. However, high-quality trials on doxapram are lacking. The DOXA-trial therefore aims to investigate the safety and efficacy of doxapram compared to placebo in reducing the composite outcome of death or severe disability at 18 to 24 months corrected age. METHODS: The DOXA-trial is a double blinded, multicentre, randomized, placebo-controlled trial conducted in the Netherlands, Belgium and Canada. A total of 396 preterm infants with a gestational age below 29 weeks, suffering from AOP unresponsive to non-invasive respiratory support and caffeine will be randomized to receive doxapram therapy or placebo. The primary outcome is death or severe disability, defined as cognitive delay, cerebral palsy, severe hearing loss, or bilateral blindness, at 18-24 months corrected age. Secondary outcomes are short-term neonatal morbidity, including duration of mechanical ventilation, bronchopulmonary dysplasia and necrotising enterocolitis, hospital mortality, adverse effects, pharmacokinetics and cost-effectiveness. Analysis will be on an intention-to-treat principle. DISCUSSION: Doxapram has the potential to improve neonatal outcomes by improving respiration, but the safety concerns need to be weighed against the potential risks of invasive mechanical ventilation. It is unknown if the use of doxapram improves the long-term outcome. This forms the clinical equipoise of the current trial. This international, multicentre trial will provide the needed high-quality evidence on the efficacy and safety of doxapram in the treatment of AOP in preterm infants. TRIAL REGISTRATION: ClinicalTrials.gov NCT04430790 and EUDRACT 2019-003666-41. Prospectively registered on respectively June and January 2020.


Assuntos
Displasia Broncopulmonar , Doxapram , Humanos , Lactente , Recém-Nascido , Cafeína/efeitos adversos , Doxapram/efeitos adversos , Idade Gestacional , Recém-Nascido Prematuro , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Método Duplo-Cego
5.
Trials ; 23(1): 838, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183143

RESUMO

BACKGROUND: International guidelines recommend delayed umbilical cord clamping (DCC) up to 1 min in preterm infants, unless the condition of the infant requires immediate resuscitation. However, clamping the cord prior to lung aeration may severely limit circulatory adaptation resulting in a reduction in cardiac output and hypoxia. Delaying cord clamping until lung aeration and ventilation have been established (physiological-based cord clamping, PBCC) allows for an adequately established pulmonary circulation and results in a more stable circulatory transition. The decline in cardiac output following time-based delayed cord clamping (TBCC) may thus be avoided. We hypothesise that PBCC, compared to TBCC, results in a more stable transition in very preterm infants, leading to improved clinical outcomes. The primary objective is to compare the effect of PBCC on intact survival with TBCC. METHODS: The Aeriation, Breathing, Clamping 3 (ABC3) trial is a multicentre randomised controlled clinical trial. In the interventional PBCC group, the umbilical cord is clamped after the infant is stabilised, defined as reaching heart rate > 100 bpm and SpO2 > 85% while using supplemental oxygen < 40%. In the control TBCC group, cord clamping is time based at 30-60 s. The primary outcome is survival without major cerebral and/or intestinal injury. Preterm infants born before 30 weeks of gestation are included after prenatal parental informed consent. The required sample size is 660 infants. DISCUSSION: The findings of this trial will provide evidence for future clinical guidelines on optimal cord clamping management in very preterm infants at birth. TRIAL REGISTRATION: ClinicalTrials.gov NCT03808051. First registered on January 17, 2019.


Assuntos
Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Constrição , Feminino , Retardo do Crescimento Fetal , Humanos , Lactente , Recém-Nascido , Estudos Multicêntricos como Assunto , Oxigênio , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Cordão Umbilical/cirurgia
6.
BMJ Paediatr Open ; 6(1)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36053638

RESUMO

INTRODUCTION: Cardiorespiratory monitoring is used in the neonatal intensive care unit (NICU) to assess the clinical status of newborn infants and detect critical deteriorations in cardiorespiratory function. Currently, heart rate (HR) is monitored by electrocardiography (ECG) and respiration by chest impedance (CI). Disadvantages of current monitoring techniques are usage of wired adhesive electrodes which may damage the skin and hinder care. The Bambi® belt is a wireless and non-adhesive alternative that enables cardiorespiratory monitoring by measuring electrical activity of the diaphragm via transcutaneous electromyography. A previous study showed feasibility of the Bambi® belt and this study compares the belt performance to ECG and CI. METHODS AND ANALYSIS: This multicentre non-inferiority paired study will be performed in the NICU of the Máxima Medical Center (MMC) in Veldhoven and the Emma Children's Hospital, Amsterdam University Medical Centre (AmsterdamUMC) in Amsterdam, The Netherlands. 39 infants in different postmenstrual age groups (minimally 10 infants<30 weeks, between 30-32 weeks and >32 weeks) will be recruited. These infants will be monitored with the Bambi® belt in addition to standard ECG and CI for 24 hours. The primary outcome is the HR, studied with three criteria: (1) the limits of agreement of the HR measurements in terms of the second-to-second difference in the HR between the belt and standard ECG, (2) the detection of cardiac events consisting of bradycardia and tachycardia and (3) the quality of HR-monitoring. The secondary outcome is the respiratory rate (RR), studied with the criteria (1) agreement in RR-trend monitoring, (2) apnoea and tachypnoea detection and (3) reliable registrations. ETHICS AND DISSEMINATION: This protocol was approved by the Medical Ethical Committee of the MMC and the Central Committee for Human Research. The MMC started patient recruitment in July and the AmsterdamUMC in August 2021. The results will be presented at conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NL9480.


Assuntos
Adesivos , Diafragma , Criança , Diafragma/fisiologia , Eletrocardiografia/métodos , Humanos , Lactente , Recém-Nascido , Proteínas de Membrana , Monitorização Fisiológica/métodos , Estudos Multicêntricos como Assunto , Taxa Respiratória/fisiologia
7.
Physiol Meas ; 43(5)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453135

RESUMO

Objective.Monitoring heart rate (HR) and respiratory rate (RR) is essential in preterm infants and is currently measured with ECG and chest impedance (CI), respectively. However, in current clinical practice these techniques use wired adhesive electrodes which can cause skin damage and hinder parent-infant interaction. Moreover, CI is not always reliable. We assessed the feasibility of a wireless dry electrode belt to measure HR and RR via transcutaneous diaphragmatic electromyography (dEMG).Approach.In this prospective, observational study, infants were monitored up to 72 h with the belt and standard CI. Feasibility of the belt was expressed by its ability to retrieve a respiratory waveform from dEMG, determining the percentage of time with stable respiration data without signal errors ('lead-off' and Bluetooth Loss Error, 'BLE'), skin-friendliness of the belt (skin score) and by exploring the ability to monitor trends in HR and RR with the belt.Main results.In all 19 included infants (median gestational age 27.3 weeks) a respiratory waveform could be obtained. The amount of signal errors was low (lead-off 0.5% (IQR 0.1-1.6) and BLE 0.3% (IQR 0.1-0.9)) and 76.5% (IQR 69.3-80.0) of the respiration measurement was stable. No adverse skin effects were observed (median skin score of 3(3-4)). A similar HR and RR trend between the belt and CI was observed.Significance.Dry electrodes incorporated in a non-adhesive belt can measure dEMG in preterm infants. The belt provided a HR and RR trend similar to CI. Future studies are required to investigate the non-inferiority of the belt as a cardiorespiratory monitor compared to CI.


Assuntos
Recém-Nascido Prematuro , Taxa Respiratória , Eletrodos , Estudos de Viabilidade , Humanos , Lactente , Recém-Nascido , Estudos Prospectivos , Taxa Respiratória/fisiologia
8.
Front Pediatr ; 7: 179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134170

RESUMO

Background: Although most preterm infants breathe at birth, their respiratory drive is weak and supplemental oxygen is often needed to overcome hypoxia. This could in turn lead to hyperoxia. To reduce the risk of hyperoxia, currently an initial low oxygen concentration (21-30%) is recommended during stabilization at birth, accepting the risk of a hypoxic period. However, hypoxia inhibits respiratory drive in preterm infants. Starting with a higher level of oxygen could lead to a shorter duration of hypoxia by stimulating breathing effort of preterm infants, and combined with subsequent titration based on oxygen saturation, prolonged hyperoxia might be prevented. Study design: This multi-center randomized controlled trial will include 50 infants with a gestational age between 24 and 30 weeks. Eligible infants will be randomized to stabilization with an initial FiO2 of either 1.0 or 0.3 at birth. Hereafter, FiO2 will be titrated based on the oxygen saturation target range. In both groups, all other interventions during stabilization and thereafter will be similar. The primary outcome is respiratory effort in the first 5 min after birth expressed as average minute volume/kg. Secondary outcomes include inspired tidal volumes/kg, rate of rise to maximum tidal volume/kg, percentage of recruitment breaths with tidal volumes above 8 mL/kg, duration of hypoxia and hyperoxia and plasma levels of markers of oxidative stress (8-iso-prostaglandin F2α). Discussion: Current resuscitation guidelines recommend oxygen titration if infants fail to achieve the 25th percentile of the SpO2 reference ranges. It has become clear that, using this approach, most preterm infants are at risk for hypoxia in the first 5 min after birth, which could suppress the breathing effort. In addition, for compromised preterm infants who need respiratory support at birth, higher SpO2 reference ranges in the first minutes after birth might be needed to prevent prolonged hypoxia. Enhancing breathing effort by achieving an adequate level of oxygenation could potentially lead to a lower incidence of intubation and mechanical ventilation in the delivery room, contributing to a lower risk on lung injury in high-risk preterm infants. Measuring 8-iso-prostaglandin F2α could lead to a reflection of the true amount of oxygen exposure in both study groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...