Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(36): 12704-12716, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37609935

RESUMO

Phosphor-converted white light-emitting diodes (WLEDs) have received significant attention; however, the leaked light from their blue InGaN chips has an undesirable effect on human health. Hence, it is necessary to develop red, green, and blue-emitting phosphors, which can be excited by an NUV chip instead of a blue chip. Herein, green-emitting ZnO:Cu2+ phosphors have been successfully synthesized by a simple and facile thermal diffusion method. The obtained powder shows a broad emission band peaking at 525 nm and a strong absorption peak at 377 nm. The ZnO:5%Cu2+ phosphor annealed at 800 °C in 2 hours revealed a lifetime of 0.57 ms, an activation energy of 0.212 eV, and the highest emission intensity with (x, y) CIE colour coordinates (0.3130, 0.5253). A WLED prototype has been fabricated by coating the ZnO:5%Cu2+ phosphor on an NUV 375 nm LED chip, where this coated phosphor shows a high quantum efficiency (QE) of 56.6%. This is, so far, the highest reported QE value for ZnO-based phosphors. These results suggest that the ZnO:Cu2+ phosphor could be an excellent candidate for NUV-pumped phosphor-converted WLED applications.

2.
RSC Adv ; 13(36): 25069-25080, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37614782

RESUMO

Eu3+-doped phosphors have been much attractive owing to their narrow-band red emission peak at 610-630 nm with high color purity; however, the weak and narrow absorption band in the NUV region limits their applications. Doping a higher amount of Eu3+ ions into a non-concentration quenching host could be key to enhancing the efficiency of the absorption value and emission intensity. Hence, the design of Eu3+-heavily doped phosphors with a suitable host lattice is key for applications. In this study, red-emitting Eu3+-doped Gd(BO2)3-Y3BO6-GdBO3 (GdYGd:Eu3+) phosphor with a high quantum efficiency of 58.4% and excellent color purity of 99.5% is reported for the first time. The phosphor is efficiently excited by NUV light at 394 nm and emits a strong red emission band in the 590-710 nm range, peaking at 612 nm. The optimal annealing temperature and Eu3+ doping content to obtain the strongest PL intensity are 1100 °C and 20 mol%, respectively. The optimized GdYGd:Eu3+ phosphor possesses a high activation energy of 0.319 eV and a lifetime of 1.14 ms. An illustration of phosphor-coated NUV LED with chromaticity coordinates (x = 0.5636,y = 0.2961) was successfully synthesized, demonstrating the great potential of GdYGd:Eu3+ phosphor for NUV-pumped WLED applications.

3.
Dalton Trans ; 50(36): 12570-12582, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34223857

RESUMO

Although it has been extensively studied for decades, the α-Al2O3:Cr3+ phosphor has rarely been investigated for horticultural lighting. In this work, for the first time, a prototype of a plant growth light-emitting diode (LED) has been fabricated by coating a deep-red-emitting α-Al2O3:Cr3+ phosphor onto a near-ultraviolet (NUV) chip. The α-Al2O3:Cr3+ phosphor, synthesized by a co-precipitation method and annealed at 1500 °C for 2 h, emits an outstanding narrow peak at 695 nm. The α-Al2O3:0.6%Cr3+ phosphor shows a high activation energy of 0.29 eV, a long lifetime of 3.4 ms, and a superior color purity of 100%. The chromatic coordinates and the QE value of the red LED obtained by coating an α-Al2O3:0.6%Cr3+ phosphor on a NUV chip are (x = 0.5650, y = 0.2429) and 87.1%, respectively.

4.
Sci Rep ; 10(1): 4789, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179867

RESUMO

Two-dimensional (2D) van der Waals ferromagnetic materials are emerging as promising candidates for applications in ultra-compact spintronic nanodevices, nanosensors, and information storage. Our recent discovery of the strong room temperature ferromagnetism in single layers of VSe2 grown on graphite or MoS2 substrate has opened new opportunities to explore these ultrathin magnets for such applications. In this paper, we present a new type of magnetic sensor that utilizes the single layer VSe2 film as a highly sensitive magnetic core. The sensor relies in changes in resonance frequency of the LC circuit composed of a soft ferromagnetic microwire coil that contains the ferromagnetic VSe2 film subject to applied DC magnetic fields. We define sensitivity as the slope of the characteristic curve of our sensor, df0/dH, where f0 is the resonance frequency and H is the external magnetic field. The sensitivity of the sensor reaches a large value of 16 × 106 Hz/Oe, making it a potential candidate for a wide range of magnetic sensing applications.

5.
Micron ; 104: 61-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29101880

RESUMO

This paper reports on the in situ observation of phase transformation in an iron carbide nanocrystal encapsulated in a graphitic shell by means of high resolution transmission electron microscopy (HR-TEM). A Fe7C3 nanocrystal in orthorhombic (o-Fe7C3) structure with carbon graphitic cover is captured at the initial time of the experiment. Under the projection of a high-energy electron beam (200kV), the graphitic carbon layer evaporates gradually and structural changes in orthorhombic (o-Fe7C3) crystal manifests simultaneously. Specifically, changes in crystal direction happens first and then the crystal structure switching between orthorhombic and hexagonal (h-Fe7C3) follows. Details analysis and conclusive evidences of the phase structure and transformation are presented and discussed. The appearance of o-Fe7C3 structure is captured for about 92min over 100min of observation, indicating the preference of o-Fe7C3 form over h-Fe7C3 form.

6.
Luminescence ; 32(5): 817-823, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28028916

RESUMO

This paper reports a novel way for the synthesis of a europium (Eu)-doped fluor-hydroxyapatite (FHA) nanostructure to control the luminescence of hydroxyapatite nanophosphor, particularly, by applying optimum fluorine concentrations, annealed temperatures and pH value. The Eu-doped FHA was made using the co-precipitation method followed by thermal annealing in air and reducing in a H2 atmosphere to control the visible light emission center of the nanophosphors. The intensities of the OH- group decreased with the increasing fluorine concentrations. For the specimens annealed in air, the light emission center of the nanophosphor was 615 nm, which was emission from the Eu3+ ion. However, when they were annealed in reduced gas (Ar + 5% H2 ), a 448 nm light emission center from the Eu2+ ion of FHA was observed. The presence of fluorine in Eu-doped FHA resulted in a significant enhancement of nanophosphor luminescence, which has potential application in light emission and nanomedicine.


Assuntos
Durapatita/química , Európio/química , Substâncias Luminescentes/química , Fluoretação , Concentração de Íons de Hidrogênio , Hidroxiapatitas/química , Luz , Substâncias Luminescentes/síntese química , Medições Luminescentes , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Espectrometria por Raios X , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...