Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 257: 107077, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436252

RESUMO

Inversion of in situ borehole gamma spectrometry data is a faster and relatively less laborious method for calculating the vertical distribution of radioactivity in soil than conventional soil sampling method. However, the efficiency calculation of a detector for such measurements is a challenging task due to spatial and temporal variation of the soil properties and other measurement parameters. In this study, the sensitivity of different soil characteristics and measurement parameters on simulated efficiencies for a 662 keV photon peak were investigated. In addition, a Bayesian data inversion with a Gaussian process model was used to calculate the activity concentration of 137Cs and its uncertainty considering the sources of uncertainty identified during the sensitivity analysis, including soil density, borehole radius, and the uncertainty in detector position in the borehole. Several soil samples were also collected from the borehole and surrounding area, and 137Cs activity concentration was measured to compare with the inversion results. The calculated 137Cs activity concentrations agree well with those obtained from soil samples. Therefore, it can be concluded that the vertical radioactivity distribution can be calculated using the probabilistic method using in situ gamma spectrometric measurements.


Assuntos
Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Espectrometria gama/métodos , Monitoramento de Radiação/métodos , Solo , Teorema de Bayes , Poluentes Radioativos do Solo/análise
2.
J Environ Radioact ; 256: 107052, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36308943

RESUMO

Environmental contamination by radioactive materials can be characterized by in situ gamma surface measurements. During such measurements, the field of view of a gamma detector can be tens of meters wide, resulting in a count rate that integrates the signal over a large measurement support volume/area. The contribution of a specific point to the signal depends on various parameters, such as the height of the detector above the ground surface, the gamma energy and the detector properties, etc. To improve the spatial resolution of the activity concentration, contributions of a radionuclide from nearby areas to the count rate of a single measurement should be disentangled. The experiments described in this paper, deployed 2D inversion of in situ gamma spectrometric measurements using a non-negative least squares-based Tikhonov regularization method. Data were acquired using a portable LaBr3 gamma detector. The detector response as a function of the distance of the radioactive source, required for the inversion process, was simulated using the Monte Carlo N-Particle (MCNP) transport code. The uncertainty on activity concentration was calculated using the Monte Carlo error propagation method. The 2D inversion methodology was first satisfactorily assessed for 133Ba and 137Cs source activity distributions using reference pads. Secondly, this method was applied on a 137Cs contaminated site, making use of above-ground in-situ gamma spectrometry measurements, conducted on a regular grid. The inversion process results were compared with the results from in-situ borehole measurements and laboratory analyses of soil samples. The calculated 137Cs activity concentration levels were compared against the activity concentration value for exemption or clearance of materials which can be applied by default to any amount and any type of solid material. Using the 2D inversion and the Monte Carlo error propagation method, a high spatial resolution classification of the site, in terms of exceeding the exemption limit, could be made. The 137Cs activity concentrations obtained using the inversion process agreed well with the results from the in-situ borehole measurements and those from the soil samples, showing that the 2D inversion is a convenient approach to deconvolute the contribution of radioactive sources from nearby areas within a detector's field of view, and increases the resolution of spatial contamination mapping.


Assuntos
Monitoramento de Radiação , Espectrometria gama , Espectrometria gama/métodos , Monitoramento de Radiação/métodos , Radioisótopos de Césio/análise , Método de Monte Carlo , Solo
3.
Appl Radiat Isot ; 185: 110247, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35452907

RESUMO

A 3.81 × 3.81 cm LaBr3(Ce) detector based portable measurement setup has been developed for in situ gamma spectrometric survey of a contaminated site. This system is suitable for above- and below ground surface gamma spectrometric measurements of 137Cs. However, the minimum detectable activity concentration (MDAC), an important parameter of a measurement system, should be estimated for planning purposes of the gamma spectrometric survey. In this study, the MDAC of 137Cs for the measurement setup was investigated. The efficiency of the measurement setups was calculated from Monte Carlo simulations using MCNP code. The numerical model of the different studied set-ups, used in MCNP, performed well for the known cases. The results show that the MDAC varies with the position of the detector with respect to ground surface. A 5-20 min acquisition time, depending on the detector position, can be sufficient to get a MDAC of about 10% of the exemption limit of 137Cs (100 Bq/kg).


Assuntos
Monitoramento de Radiação , Espectrometria gama , Brometos , Lantânio , Método de Monte Carlo , Espectrometria gama/métodos
4.
J Environ Radioact ; 243: 106807, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34968949

RESUMO

An in situ borehole gamma logging method using a LaBr3 gamma detector has been developed to characterize a137Cs contaminated site. The activity-depth distribution of 137Cs was derived by inversion of the in situ measurement data using two different least squares methods, (i) Least squares optimization (LSO) and (ii) Tikhonov regularization. The regularization parameter (λ) of the Tikhonov regularization method was estimated using three different methods i.e. the L-curve, Generalized Cross Validation (GCV) and a prior information based method (PIBM). The considered inversion method variants were first validated for a137Cs contaminated pipe, and in most of the cases, the calculated activity of 137Cs was found to be within the acceptable range. The calculated 137Cs activity-depth profiles from in situ measurements were also in good agreement with the ones obtained from soil sample analysis, with an R2 ranging from 0.76 to 0.82. The GCV method for estimating λ appeared to perform better than the two other methods in terms of R2 and root mean squared error (RMSE). The L-curve method resulted in higher RMSE than the other Tikhonov regularization methods. Instability was observed in the activity concentration depth profile obtained from the LSO method. Therefore, we recommend the Tikhonov regularization with GCV for estimating λ for estimating the activity concentration-depth profile. The site studied showed 137Cs activity concentrations above the exemption limit down to depths of 0.50-0.90 m.


Assuntos
Monitoramento de Radiação , Radioatividade , Solo , Espectrometria gama
5.
Appl Radiat Isot ; 174: 109790, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058520

RESUMO

A reliable detector model is needed for Monte Carlo efficiency calibration. A LaBr3(Ce) detector model was optimized and verified using different radioactive sources (241Am,133Ba,137Cs,60Co and152Eu) and geometries (point, extended and surface). PENELOPE and MCNP were used for Monte Carlo simulations. A good agreement was observed between simulated and experimental full energy peak efficiencies (FEPE) as their mean relative difference was 2.84% ± 1.93% and 2.79% ± 1.99% for PENELOPE and MCNP simulation, respectively. The differences between simulated FEPEs of two Monte Carlo codes were negligible except for low energies (< 100 keV).

6.
Materials (Basel) ; 13(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204456

RESUMO

Fluid flow characteristics are important to assess reservoir performance. Unfortunately, laboratory techniques are inadequate to know these characteristics, which is why numerical methods were developed. Such methods often use computed tomography (CT) scans as input but this technique is plagued by a resolution versus sample size trade-off. Therefore, a super-resolution method using generative adversarial neural networks (GANs) was used to artificially improve the resolution. Firstly, the influence of resolution on pore network properties and single-phase, unsaturated, and two-phase flow was analysed to verify that pores and pore throats become larger on average and surface area decreases with worsening resolution. These observations are reflected in increasingly overestimated single-phase permeability, less moisture uptake at lower capillary pressures, and high residual oil fraction after waterflooding. Therefore, the super-resolution GANs were developed which take low (12 µm) resolution input and increase the resolution to 4 µm, which is compared to the expected high-resolution output. These results better predicted pore network properties and fluid flow properties despite the overestimation of porosity. Relevant small pores and pore surfaces are better resolved thus providing better estimates of unsaturated and two-phase flow which can be heavily influenced by flow along pore boundaries and through smaller pores. This study presents the second case in which GANs were applied to a super-resolution problem on geological materials, but it is the first one to apply it directly on raw CT images and to determine the actual impact of a super-resolution method on fluid predictions.

7.
Phys Rev E ; 100(5-1): 053316, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869920

RESUMO

Microstructure strongly influences flow and transport properties of porous media. Flow and transport simulations within porous media, therefore, requires accurate three-dimensional (3D) models of the pore and solid phase structure. To date, no imaging method can resolve all relevant heterogeneities from the nano- to the centimeter scale within complex heterogeneous materials such as clay, reservoir rocks (e.g., travertine, chalk, ...), hardened cement paste, and concrete. To reconstruct these porous materials it is thus necessary to merge information from different 2D and potentially 3D imaging methods. One porous media reconstruction methodology that has been around for at least two decades is simulated annealing (SA). However, realizations with SA typically suffer an artificially reduced long-range connectivity, while multiphase reconstructions are not feasible in most cases because of a prohibitive computational burden. To solve these problems we propose a hierarchical multiresolution and multiphase simulated annealing algorithm. To decrease the computational cost of multiphase simulation, our algorithm sequentially simulates one phase after another, in a hierarchical way, which enables handling multimodal distributions and topological relations. Building upon recent work, our algorithm improves long-range connectivity and CPU efficiency by simulating larger particles using a coarser resolution that is subsequently refined compared to standard SA; our proposed extension not only offers the possibility to perform multiphase reconstruction but also allows us (i) to improve binary reconstruction quality, as quantified, e.g., by multiple-point histograms by up to one order of magnitude and (ii) to achieve an overall speed-up. The proposed algorithm is also shown to outperform the direct sampling multiple-point statistics method for the generation of cement paste microstructure with respect to both generation time and quality.

8.
PLoS One ; 12(5): e0176656, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467468

RESUMO

Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.


Assuntos
Água Subterrânea , Bélgica , Monitoramento Ambiental , Água Subterrânea/normas , Modelos Teóricos , Solo/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...