Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 25(1): 24, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741048

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting 44 million people worldwide, leading to cognitive decline, memory loss, and significant impairment in daily functioning. The recent single-cell sequencing technology has revolutionized genetic and genomic resolution by enabling scientists to explore the diversity of gene expression patterns at the finest resolution. Most existing studies have solely focused on molecular perturbations within each cell, but cells live in microenvironments rather than in isolated entities. Here, we leveraged the large-scale and publicly available single-nucleus RNA sequencing in the human prefrontal cortex to investigate cell-to-cell communication in healthy brains and their perturbations in AD. We uniformly processed the snRNA-seq with strict QCs and labeled canonical cell types consistent with the definitions from the BRAIN Initiative Cell Census Network. From ligand and receptor gene expression, we built a high-confidence cell-to-cell communication network to investigate signaling differences between AD and healthy brains. RESULTS: Specifically, we first performed broad communication pattern analyses to highlight that biologically related cell types in normal brains rely on largely overlapping signaling networks and that the AD brain exhibits the irregular inter-mixing of cell types and signaling pathways. Secondly, we performed a more focused cell-type-centric analysis and found that excitatory neurons in AD have significantly increased their communications to inhibitory neurons, while inhibitory neurons and other non-neuronal cells globally decreased theirs to all cells. Then, we delved deeper with a signaling-centric view, showing that canonical signaling pathways CSF, TGFß, and CX3C are significantly dysregulated in their signaling to the cell type microglia/PVM and from endothelial to neuronal cells for the WNT pathway. Finally, after extracting 23 known AD risk genes, our intracellular communication analysis revealed a strong connection of extracellular ligand genes APP, APOE, and PSEN1 to intracellular AD risk genes TREM2, ABCA1, and APP in the communication from astrocytes and microglia to neurons. CONCLUSIONS: In summary, with the novel advances in single-cell sequencing technologies, we show that cellular signaling is regulated in a cell-type-specific manner and that improper regulation of extracellular signaling genes is linked to intracellular risk genes, giving the mechanistic intra- and inter-cellular picture of AD.


Assuntos
Doença de Alzheimer , Comunicação Celular , Análise de Célula Única , Transcriptoma , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Comunicação Celular/fisiologia , Análise de Célula Única/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Córtex Pré-Frontal/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/genética
2.
Science ; 384(6698): eadi5199, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781369

RESUMO

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.


Assuntos
Redes Reguladoras de Genes , Genômica , Locos de Características Quantitativas , Análise de Célula Única , Humanos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Cromatina/metabolismo , Cromatina/genética , Comunicação Celular/genética , Encéfalo/metabolismo , Envelhecimento/genética , Transtornos Mentais/genética
3.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38562822

RESUMO

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.

4.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562832

RESUMO

Genome-wide association studies (GWAS) and expression analyses implicate noncoding regulatory regions as harboring risk factors for psychiatric disease, but functional characterization of these regions remains limited. We performed capture STARR-sequencing of over 78,000 candidate regions to identify active enhancers in primary human neural progenitor cells (phNPCs). We selected candidate regions by integrating data from NPCs, prefrontal cortex, developmental timepoints, and GWAS. Over 8,000 regions demonstrated enhancer activity in the phNPCs, and we linked these regions to over 2,200 predicted target genes. These genes are involved in neuronal and psychiatric disease-associated pathways, including dopaminergic synapse, axon guidance, and schizophrenia. We functionally validated a subset of these enhancers using mutation STARR-sequencing and CRISPR deletions, demonstrating the effects of genetic variation on enhancer activity and enhancer deletion on gene expression. Overall, we identified thousands of highly active enhancers and functionally validated a subset of these enhancers, improving our understanding of regulatory networks underlying brain function and disease.

5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493342

RESUMO

Dynamic compartmentalization of eukaryotic DNA into active and repressed states enables diverse transcriptional programs to arise from a single genetic blueprint, whereas its dysregulation can be strongly linked to a broad spectrum of diseases. While single-cell Hi-C experiments allow for chromosome conformation profiling across many cells, they are still expensive and not widely available for most labs. Here, we propose an alternate approach, scENCORE, to computationally reconstruct chromatin compartments from the more affordable and widely accessible single-cell epigenetic data. First, scENCORE constructs a long-range epigenetic correlation graph to mimic chromatin interaction frequencies, where nodes and edges represent genome bins and their correlations. Then, it learns the node embeddings to cluster genome regions into A/B compartments and aligns different graphs to quantify chromatin conformation changes across conditions. Benchmarking using cell-type-matched Hi-C experiments demonstrates that scENCORE can robustly reconstruct A/B compartments in a cell-type-specific manner. Furthermore, our chromatin confirmation switching studies highlight substantial compartment-switching events that may introduce substantial regulatory and transcriptional changes in psychiatric disease. In summary, scENCORE allows accurate and cost-effective A/B compartment reconstruction to delineate higher-order chromatin structure heterogeneity in complex tissues.


Assuntos
Cromatina , Cromossomos , Cromatina/genética , DNA , Conformação Molecular , Epigênese Genética
6.
PLoS Comput Biol ; 19(9): e1011444, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695793

RESUMO

Different genes form complex networks within cells to carry out critical cellular functions, while network alterations in this process can potentially introduce downstream transcriptome perturbations and phenotypic variations. Therefore, developing efficient and interpretable methods to quantify network changes and pinpoint driver genes across conditions is crucial. We propose a hierarchical graph representation learning method, called iHerd. Given a set of networks, iHerd first hierarchically generates a series of coarsened sub-graphs in a data-driven manner, representing network modules at different resolutions (e.g., the level of signaling pathways). Then, it sequentially learns low-dimensional node representations at all hierarchical levels via efficient graph embedding. Lastly, iHerd projects separate gene embeddings onto the same latent space in its graph alignment module to calculate a rewiring index for driver gene prioritization. To demonstrate its effectiveness, we applied iHerd on a tumor-to-normal GRN rewiring analysis and cell-type-specific GCN analysis using single-cell multiome data of the brain. We showed that iHerd can effectively pinpoint novel and well-known risk genes in different diseases. Distinct from existing models, iHerd's graph coarsening for hierarchical learning allows us to successfully classify network driver genes into early and late divergent genes (EDGs and LDGs), emphasizing genes with extensive network changes across and within signaling pathway levels. This unique approach for driver gene classification can provide us with deeper molecular insights. The code is freely available at https://github.com/aicb-ZhangLabs/iHerd. All other relevant data are within the manuscript and supporting information files.


Assuntos
Aprendizado Profundo , Encéfalo , Aprendizagem , Registros
7.
J Comput Biol ; 29(7): 619-633, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584295

RESUMO

Recent advances in single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) have allowed simultaneous epigenetic profiling over thousands of individual cells to dissect the cellular heterogeneity and elucidate regulatory mechanisms at the finest possible resolution. However, scATAC-seq is challenging to model computationally due to the ultra-high dimensionality, low signal-to-noise ratio, complex feature interactions, and high vulnerability to various confounding factors. In this study, we present Translator, an efficient transfer learning approach to capture generalizable chromatin interactions from high-quality (HQ) reference scATAC-seq data to obtain robust cell representations in low-to-moderate quality target scATAC-seq data. We applied Translator on various simulated and real scATAC-seq datasets and demonstrated that Translator could learn more biologically meaningful cell representations than other methods by incorporating information learned from the reference data, thus facilitating various downstream analyses such as clustering and motif enrichment measurements. Moreover, Translator's block-wise deep learning framework can handle nonlinear relationships with restricted connections using fewer parameters to boost computational efficiency through Graphics Processing Unit (GPU) parallelism. Finally, we have implemented Translator as a free software package available for the community to leverage large-scale, HQ reference data to study target scATAC-seq data.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Análise de Dados , Cromatina/genética , Aprendizado de Máquina , Análise de Célula Única/métodos , Transposases
8.
Genes (Basel) ; 13(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456427

RESUMO

Mapping chromatin insulator loops is crucial to investigating genome evolution, elucidating critical biological functions, and ultimately quantifying variant impact in diseases. However, chromatin conformation profiling assays are usually expensive, time-consuming, and may report fuzzy insulator annotations with low resolution. Therefore, we propose a weakly supervised deep learning method, InsuLock, to address these challenges. Specifically, InsuLock first utilizes a Siamese neural network to predict the existence of insulators within a given region (up to 2000 bp). Then, it uses an object detection module for precise insulator boundary localization via gradient-weighted class activation mapping (~40 bp resolution). Finally, it quantifies variant impacts by comparing the insulator score differences between the wild-type and mutant alleles. We applied InsuLock on various bulk and single-cell datasets for performance testing and benchmarking. We showed that it outperformed existing methods with an AUROC of ~0.96 and condensed insulator annotations to ~2.5% of their original size while still demonstrating higher conservation scores and better motif enrichments. Finally, we utilized InsuLock to make cell-type-specific variant impacts from brain scATAC-seq data and identified a schizophrenia GWAS variant disrupting an insulator loop proximal to a known risk gene, indicating a possible new mechanism of action for the disease.


Assuntos
Cromatina , Redes Neurais de Computação , Fator de Ligação a CCCTC/genética , Genoma , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...