Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(2): 730-737, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35517636

RESUMO

Deep ultraviolet (DUV)-treatment is an efficient method for the removal of high-energy-barrier polymeric or aliphatic organic ligands from nanomaterials. Regardless of morphology and material, the treatment can be used for nanoparticles, nanowires, and even nanosheets. The high-energy photon irradiation from low-pressure mercury lamps or radio frequency (RF) discharge excimer lamps could enhance the electrical conductivity of various nanomaterial matrixes, such as Ag nanoparticles, Bi2Se3 nanosheets, and Ag nanowires, with the aliphatic alkyl chained ligand (oleylamine; OAm) and polymeric ligand (polyvinyl pyrrolidone; PVP) as surfactants. In particular, Ag nanoparticles (AgNPs) that are DUV-treated with polyvinyl pyrrolidone (PVP) for 90 min (50-60 °C) exhibited a sheet resistance of 0.54 Ω â–¡-1, while thermal-treated AgNP with PVP had a sheet resistance of 7.5 kΩ â–¡-1 at 60 °C. The simple photochemical treatment on various dimensionality nanomaterials will be an efficient sintering method for flexible devices and wearable devices with solution-processed nanomaterials.

2.
ACS Appl Mater Interfaces ; 10(4): 3739-3749, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29322770

RESUMO

The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn2S64-, Sn2Se64-, and In2Se42-, to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn2S64-, Sn2Se64-, and In2Se42- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm2/(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.

3.
Sci Rep ; 5: 14520, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26411932

RESUMO

The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-µm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.


Assuntos
Eletrônica , Compostos Orgânicos , Semicondutores , Carbono , Fotoquímica , Polímeros
4.
Dalton Trans ; 42(29): 10545-50, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23759949

RESUMO

Cu2ZnSnS4 (CZTS) nanoparticles were synthesized by sonochemical reactions under multibubble sonoluminescence (MBSL) conditions. First, Cu2SnS3 (CTS) nanoparticles were synthesized by the sonochemical method with a 91.3% yield. Second, ZnS was coated on Cu2SnS3 nanoparticles by the same method. Then, they were transformed into CZTS nanoparticles of 90-300 nm diameter by heating them at 450 °C for 1 hour. The ratios between Zn and Sn could be controlled from 0.20 to 1.32 by adjusting the relative concentrations of Cu2SnS3 and ZnCl2. With relatively lower Zn : Sn ratios (0.20-0.41), there was a mixture of CTS and CZTS nanoparticles. The prepared nanoparticles show different band gaps from 1.19 to 1.52 eV depending on the zinc to tin ratio. In this sonochemical method without using any toxic or high temperature solvents, the specific stoichiometric element ratios in CZTS were controllable on demand and their experimental results were always reproducible in separate syntheses. The CZTS nanoparticles were investigated by using X-ray diffraction, a UV-Vis spectrophotometer, a scanning electron microscope, Raman spectroscopy, and a high resolution-transmission electron microscope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA