Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(38): 7884-7891, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37723599

RESUMO

The excited-state proton transfer (ESPT) reaction is an important primary photochemical process because it is closely related to photophysical properties. Although ESPT research in aqueous solutions is predominant, alcoholic solvent-mediated ESPT studies are also significant in terms of photoacid-based reactions. Especially, the research for dihydroxynaphthalenes (DHNs) has been largely neglected due to the challenging data interpretation of two hydroxyl groups. A novel fluorescent dye, resveratrone, synthesized by light irradiation of resveratrol, which is famous for its antioxidant properties, can be regarded as a type of DHN, and it has distinctive optical properties, including high quantum yield, a large two-photon absorption coefficient, a large Stokes shift, and very high biocompatibility. In this study, we investigate the overall kinetics of the optical properties of resveratrone and find evidence for alcoholic solvent-mediated ESPT involvement in the radiative properties of resveratrone with a large Stokes shift. Our investigation provides an opportunity to revisit the overlooked photophysical properties of intriguing photoacid behavior and the large Stokes shift of the dihydroxynaphthalene dye.

2.
J Phys Chem B ; 127(30): 6703-6713, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37471476

RESUMO

Heptazine is the molecular core of the widely studied photocatalyst carbon nitride. By analyzing the excited-state intermolecular proton-coupled electron-transfer (PCET) reaction between a heptazine derivative and a hydrogen-atom donor substrate, we are able to spectroscopically identify the resultant heptazinyl reactive radical species on a picosecond time scale. We provide detailed spectroscopic characterization of the tri-anisole heptazine:4-methoxyphenol hydrogen-bonded intermolecular complex (TAHz:MeOPhOH), using femtosecond transient absorption spectroscopy and global analysis, to reveal distinct product absorption signatures at ∼520, 1250, and 1600 nm. We assign these product peaks to the hydrogenated TAHz radical (TAHzH•) based on control experiments utilizing 1,4-dimethoxybenzene (DMB), which initiates electron transfer without concomitant proton transfer, i.e., no excited-state PCET. Additional control experiments with radical quenchers, protonation agents, and UV-vis-NIR spectroelectrochemistry also corroborate our product peak assignments. These spectral assignments allowed us to monitor the influence of the local hydrogen-bonding environment on the resulting evolution of photochemical products from excited-state PCET of heptazines. We observe that the preassociation of heptazine with the substrate in solution is extremely sensitive to the hydrogen-bond-accepting character of the solvent. This sensitivity directly influences which product signatures we detect with time-resolved spectroscopy. The spectral signature of the TAHzH• radical assigned in this work will facilitate future in-depth analysis of heptazine and carbon nitride photochemistry. Our results may also be utilized for designing improved PCET-based photochemical systems that will require precise control over local molecular environments. Examples include applications such as preparative synthesis involving organic photoredox catalysis, on-site solar water purification, as well as photocatalytic water splitting and artificial photosynthesis.

3.
Sci Adv ; 7(49): eabj7667, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851673

RESUMO

Spin-orbit coupling (SOC) is responsible for a range of spintronic and topological processes in condensed matter. Here, we show photonic analogs of SOCs in exciton-polaritons and their condensates in microcavities composed of birefringent lead halide perovskite single crystals. The presence of crystalline anisotropy coupled with splitting in the optical cavity of the transverse electric and transverse magnetic modes gives rise to a non-Abelian gauge field, which can be described by the Rashba-Dresselhaus Hamiltonian near the degenerate points of the two polarization modes. With increasing density, the exciton-polaritons with pseudospin textures undergo phase transitions to competing condensates with orthogonal polarizations. Unlike their pure photonic counterparts, these exciton-polaritons and condensates inherit nonlinearity from their excitonic components and may serve as quantum simulators of many-body SOC processes.

4.
Chem Commun (Camb) ; 57(74): 9330-9353, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528956

RESUMO

We explore the photochemistry of polymeric carbon nitride (C3N4), an archetypal organic photocatalyst, and derivatives of its structural monomer unit, heptazine (Hz). Through spectroscopic studies and computational analysis, we have observed that Hz derivatives can engage in non-innocent hydrogen bonding interactions with hydroxylic species. The photochemistry of these complexes is influenced by intermolecular nπ*/ππ* mixing of non-bonding orbitals of each component and the relative energy of intermolecular charge-transfer (CT) states. Coupling of the former to the latter appears to facilitate proton-coupled electron transfer (PCET), resulting in biradical products. We have also observed that Hz derivatives exhibit an extremely rare inverted singlet/triplet energy splitting (ΔEST). In violation of Hund's multiplicity rules, the lowest energy singlet (S1) is stabilized relative to the lowest triplet (T1) electronic excited state. Exploiting this unique inverted ΔEST character has obvious implications for transformational discoveries in solid-state OLED lighting and photovoltaics. Harnessing this inverted ΔEST, paired with light-driven intermolecular PCET reactions, may enable molecular transformations relevant for applications ranging from solar energy storage to new classes of non-triplet photoredox catalysts for pharmaceutical development. To this end, we have explored the possibility of optically controlling the photochemistry of Hz derivatives using ultrafast pump-push-probe spectroscopy. In this case, the excited state branching ratios among locally excited states of the chromophore and the reactive intermolecular CT state can be manipulated with an appropriate secondary "push" excitation pulse. These results indicate that we can predictively redirect chemical reactivity with light in this system, which is an avidly sought achievement in the field of photochemistry. Looking forward, we anticipate future opportunities for controlling heptazine photochemistry, including manipulating PCET reactivity with a diverse array of substrates and optically delivering reducing equivalents with, for example, water as a partial source of electrons and protons. Furthermore, we wholly expect that, over the next decade, materials such as Hz derivatives, that exhibit inverted ΔEST character, will spawn a significant new research effort in the field of thin-film optoelectronics, where controlling recombination via triplet excitonic states can play a critical role in determining device performance.

5.
J Phys Chem Lett ; 12(31): 7605-7611, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34350760

RESUMO

Mineral-water interfaces play an important role in many natural as well as technological fields. Fundamental properties of these interfaces are governed by the presence of the interfacial water and its specific structure at the surface. Calcite is particularly interesting as a dominant rock-forming mineral in the earth's crust. Here, we combine atomic force microscopy, sum-frequency generation spectroscopy, and molecular dynamics simulations to determine the position and orientation of the water molecules in the hydration layers of the calcite surface with high resolution. While atomic force microscopy provides detailed information about the position of the water molecules at the interface, sum-frequency generation spectroscopy can deduce the orientation of the water molecules. Comparison of the calcite-water interface to the interfaces of magnesite-water, magnesite-ethanol, and calcite-ethanol reveals a comprehensive picture with opposite water orientations in the first and second layer of the interface, which is corroborated by the molecular dynamics simulations.

7.
J Phys Chem B ; 124(51): 11680-11689, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33315409

RESUMO

To better understand how hydrogen bonding influences the excited-state landscapes of aza-aromatic materials, we studied hydrogen-bonded complexes of 2,5,8-tris (4-methoxyphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (TAHz), a molecular photocatalyst related to graphitic carbon nitride, with a variety of phenol derivatives (R-PhOH). By varying the electron-withdrawing character of the para-substituent on the phenol, we can modulate the strength of the hydrogen bond. Using time-resolved photoluminescence, we extract a spectral component associated with the R-PhOH-TAHz hydrogen-bonded complex. Surprisingly, we noticed a striking change in the relative amplitude of vibronic peaks in the TAHz-centered emission as a function of R-group on phenol. To gain a physical understanding of these spectral changes, we employed a displaced-oscillator model of molecular emission to fit these spectra. This fit assumes that two vibrational modes are dominantly coupled to the emissive electronic transition and extracts their frequencies and relative nuclear displacements (related to the Huang-Rhys factor). With the aid of quantum chemical calculations, we found that heptazine ring-breathing and ring-puckering modes are likely responsible for the observed vibronic progression, and both modes indicate decreasing molecular distortion in the excited state with increasing hydrogen bond strength. This finding offers new insights into intermolecular excited-state hydrogen bonding, which is a crucial step toward controlling excited-state proton-coupled electron transfer and proton transfer reactions.

8.
J Am Chem Soc ; 141(14): 5808-5814, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30905150

RESUMO

Rendering a high crystalline perovskite film is integral to achieve superior performance of perovskite solar cells (PSCs). Here, we established a two-dimensional liquid cage annealing system, a unique methodology for remarkable enhancement in perovskite crystallinity. During thermal annealing for crystallization, wet-perovskite films were suffocated by perfluorodecalin with distinctively low polarity, nontoxic, and chemically inert characteristics. This annealing strategy facilitated enlargement of perovskite grain and diminution in the number of trap states. The simulation results, annealing time, and temperature experiments supported that the prolonged diffusion length of precursor ions attributed to the increase of perovskite grains. Consequently, without any complicated handling, the performance of perovskite photovoltaics was remarkably improved, and the monolithic grains which directly connected the lower and upper electrode attenuated hysteresis.

9.
Adv Mater ; 30(10)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29349865

RESUMO

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has now exceeded 20%; thus, research focus has shifted to establishing the foundations for commercialization. One of the pivotal themes is to curtail the overall fabrication time, to reduce unit cost, and mass-produce PSCs. Additionally, energy dissipation during the thermal annealing (TA) stage must be minimized by realizing a genuine low-temperature (LT) process. Here, tin oxide (SnO2 ) thin films (TFs) are formulated at extremely high speed, within 5 min, under an almost room-temperature environment (<50 °C), using atmospheric Ar/O2 plasma energy (P-SnO2 ) and are applied as an electron transport layer of a "n-i-p"-type planar PSC. Compared with a thermally annealed SnO2 TF (T-SnO2 ), the P-SnO2 TF yields a more even surface but also outstanding electrical conductivity with higher electron mobility and a lower number of charge trap sites, consequently achieving a superior PCE of 19.56% in P-SnO2 -based PSCs. These findings motivate the use of a plasma strategy to fabricate various metal oxide TFs using the sol-gel route.

10.
Chem Commun (Camb) ; 53(54): 7642-7644, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28642955

RESUMO

We report a serendipitous discovery of light-induced generation of a circular microstructure on a glass surface. The microstructure has a ring shape with notable photophysical properties such as highly bright luminescence and strong resistance to photobleaching. We investigated the formation process as well as the luminescence properties of the micro ring to understand the origin of this peculiar phenomenon.

11.
Sci Rep ; 7(1): 3863, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634405

RESUMO

Excited state dynamics of common yellow dye quinophthalone (QPH) was probed by femtosecond transient absorption spectroscopy. Multi-exponential decay of the excited state and significant change of rate constants upon deuterium substitution indicate that uncommon nitrogen-to-oxygen excited state intramolecular proton transfer (ESIPT) occurs. By performing density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations, we found that adiabatic surface crossing between the S1 and S2 states takes place in the photoreaction. Unlike most cases of ESIPT, QPH does not exhibit tautomer emission, possibly due to internal conversion or back-proton transfer. The ESIPT of QPH presents a highly interesting case also because the moieties participating in ESIPT, quinoline and aromatic carbonyl, are both traditionally considered as photobases.

12.
ACS Appl Mater Interfaces ; 9(9): 8113-8120, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28211274

RESUMO

There remains tremendous interest in perovskite solar cells (PSCs) in the solar energy field; the certified power conversion efficiency (PCE) now exceeds 20%. Along with research focused on enhancing PCE, studies are also underway concerning PSC commercialization. It is crucial to simplify the fabrication process and reduce the production cost to facilitate commercialization. Herein, we successfully fabricated highly efficient hole-blocking layer (HBL)-free PSCs through vigorously interrupting penetration of hole-transport material (HTM) into fluorine-doped tin oxide by a large grain based-CH3NH3PbI3 (MAPbI3) film, thereby obtaining a PCE of 18.20%. Our results advance the commercialization of PSCs via a simple fabrication system and a low-cost approach in respect of mass production and recyclability.

13.
J Photochem Photobiol B ; 166: 52-57, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27866002

RESUMO

We synthesized a new organic fluorescent dye named resveratrone glucoside from the photoreaction of naturally-occurring phytoalexin compound resveratrol glucoside (resveratrol-3-ß-mono-d-glucoside), which is abundant in various plants such as berries, herbs, nuts and grapes. Just like its predecessor molecule resveratrone that was previously discovered by our group, resveratrone glucoside possesses excellent optical properties including a high fluorescence quantum yield, a large Stokes' shift, and a large two-photon absorption cross section. In addition to these highly desirable properties, both fluorescent molecules can also be used as ideal bio-compatible organic fluorophores since they have remarkably low cytotoxicity, which we verified through our cell morphological study, trypan blue exclusion assay, Western blot analysis and fluorescence imaging of various live biological specimens. In particular, we note that resveratrone glucoside is much more soluble in aqueous solution because of its glycosidic side chain and therefore highly suitable for in vivo imaging. We demonstrated that resveratrone and resveratrone glucoside can be used in one- and two-photon fluorescence microscopic imaging of E. coli, yeast (S. cerevisiae), and mammalian cell lines including HeLa and MCF10A cells as well as to the live imaging and real-time tracking of the zebrafish embryo development. Both organic fluorophores can be readily obtained from a simple photoreaction of commercially available, inexpensive samples.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Compostos Orgânicos/química , Linhagem Celular , Humanos , Fótons , Espectrofotometria Ultravioleta
15.
Biomaterials ; 45: 81-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25662498

RESUMO

Au/Ag hollow nanoshells (AuHNSs) were developed as multifunctional therapeutic agents for effective, targeted, photothermally induced drug delivery under near-infrared (NIR) light. AuHNSs were synthesized by galvanic replacement reaction. We further conjugated antibodies against the epidermal growth factor receptor (EGFR) to the PEGylated AuHNS, followed by loading with the antitumor drug doxorubicin (AuHNS-EGFR-DOX) for lung cancer treatment. AuHNSs showed similar photothermal efficiency to gold nanorods under optimized NIR laser power. The targeting of AuHNS-EGFR-DOX was confirmed by light-scattering images of A549 cells, and doxorubicin release from the AuHNSs was evaluated under low pH and NIR-irradiated conditions. Multifunctional AuHNS-EGFR-DOX induced photothermal ablation of the targeted lung cancer cells and rapid doxorubicin release following irradiation with NIR laser. Furthermore, we evaluated the effectiveness of AuHNS-EGFR-DOX drug delivery by comparing two drug delivery methods: receptor-mediated endocytosis and cell-surface targeting. Accumulation of the AuHNS-EGFR-DOX on the cell surfaces by targeting EGFR turned out to be more effective for lung cancer treatments than uptake of AuHNS-EGFR-DOX. Taken together, our data suggest a new and optimal method of NIR-induced drug release via the accumulation of targeted AuHNS-EGFR-DOX on cancer cell membranes.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Ouro/química , Hipertermia Induzida , Neoplasias Pulmonares/patologia , Fototerapia , Prata/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Nanoconchas/química , Nanoconchas/ultraestrutura , Polietilenoglicóis/química , Reprodutibilidade dos Testes , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...