Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 19: 100611, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36969699

RESUMO

Despite current developments in bone substitute technology for spinal fusion, there is a lack of adequate materials for bone regeneration in clinical applications. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is commercially available, but a severe inflammatory response is a known side effect. Bone graft substitutes that enhance osteogenesis without adverse effects are needed. We developed a bioactive molecule-laden PLGA composite with multi-modulation for bone fusion. This bioresorbable composite scaffold was considered for bone tissue engineering. Among the main components, magnesium hydroxide (MH) aids in reduction of acute inflammation affecting disruption of new bone formation. Decellularized bone extracellular matrix (bECM) and demineralized bone matrix (DBM) composites were used for osteoconductive and osteoinductive activities. A bioactive molecule, polydeoxyribonucleotide (PDRN, PN), derived from trout was used for angiogenesis during bone regeneration. A nano-emulsion method that included Span 80 was used to fabricate bioactive PLGA-MH-bECM/DBM-PDRN (PME2/PN) composite to obtain a highly effective and safe scaffold. The synergistic effect provided by PME2/PN improved not only osteogenic and angiogenic gene expression for bone fusion but also improved immunosuppression and polarization of macrophages that were important for bone tissue repair, using a rat model of posterolateral spinal fusion (PLF). It thus had sufficient biocompatibility and bioactivity for spinal fusion.

2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614335

RESUMO

Bone morphogenetic protein-2 (BMP-2) is used in the treatment of degenerative spinal disease and vertebral fractures, spine fusion, dental surgery, and facial surgery. However, high doses are associated with side effects such as inflammation and osteophytes. In this study, we performed spinal fusion surgery on mini-pigs using BMP-2 and a HA/ß-TCP hydrogel carrier, and evaluated the degree of fusion and osteophyte growth according to time and dosage. Increasing the dose of BMP-2 led to a significantly higher fusion rate than was observed in the control group, and there was no significant difference between the 8-week and 16-week samples. We also found that the HA + ß-TCP hydrogel combination helped maintain the rate of BMP-2 release. In conclusion, the BMP-2-loaded HA/ß-TCP hydrogel carrier used in this study overcame the drawback of potentially causing side effects when used at high concentrations by enabling the sustained release of BMP-2. This method is also highly efficient, since it provides mineral matter to accelerate the fusion rate of the spine and improve bone quality.


Assuntos
Proteína Morfogenética Óssea 2 , Proteínas Recombinantes , Fusão Vertebral , Animais , Humanos , Proteína Morfogenética Óssea 2/uso terapêutico , Hidrogéis , Proteínas Recombinantes/uso terapêutico , Fusão Vertebral/métodos , Suínos , Porco Miniatura , Fator de Crescimento Transformador beta/farmacologia
3.
Cancers (Basel) ; 12(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302414

RESUMO

The Mycobacterium Bacillus Calmette-Guérin cell wall skeleton (BCG-CWS), the main immune active center of BCG, is a potent candidate non-infectious immunotherapeutic drug and an alternative to live BCG for use against urothelial carcinoma. However, its application in anticancer therapy is limited, as BCG-CWS tends to aggregate in both aqueous and non-aqueous solvents. To improve the internalization of BCG-CWS into bladder cancer cells without aggregation, BCG-CWS was nanoparticulated at a 180 nm size in methylene chloride and subsequently encapsulated with conventional liposomes (CWS-Nano-CL) using an emulsified lipid (LEEL) method. In vitro cell proliferation assays showed that CWS-Nano-CL was more effective at suppressing bladder cancer cell growth compared to nonenveloped BCG-CWS. In an orthotopic implantation model of luciferase-tagged MBT2 bladder cancer cells, encapsulated BCG-CWS nanoparticles could enhance the delivery of BCG-CWS into the bladder and suppress tumor growth. Treatment with CWS-Nano-CL induced the inhibition of the mammalian target of rapamycin (mTOR) pathway and the activation of AMP-activated protein kinase (AMPK) phosphorylation, leading to apoptosis, both in vitro and in vivo. Furthermore, the antitumor activity of CWS-Nano-CL was mediated predominantly by reactive oxygen species (ROS) generation and AMPK activation, which induced endoplasmic reticulum (ER) stress, followed by c-Jun N-terminal kinase (JNK) signaling-mediated apoptosis. Therefore, our data suggest that the intravesical instillation of liposome-encapsulated BCG-CWS nanoparticles can facilitate BCG-CW cellular endocytosis and provide a promising drug-delivery system as a therapeutic strategy for BCG-mediated bladder cancer treatment.

4.
Pharmaceutics ; 11(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817179

RESUMO

Although bacillus Calmette-Guérin cell wall skeleton (BCG-CWS) might function as a potential substitute for live BCG, its use in the treatment of bladder cancer remains limited owing to issues such as insolubility and micrometer-size following exposure to an aqueous environment. Thus, to develop a novel nanoparticulate system for efficient BCG-CWS delivery, liposomal encapsulation was carried out using a modified emulsification-solvent evaporation method (targets: Size, <200 nm; encapsulation efficiency, ~60%). Further, the liposomal surface was functionalized with specific ligands, folic acid (FA), and Pep-1 peptide (Pep1), as targeting and cell-penetrating moieties, respectively. Functionalized liposomes greatly increased the intracellular uptake of BCG-CWS in the bladder cancer cell lines, 5637 and MBT2. The immunoactivity was verified through elevated cytokine production and a THP-1 migration assay. In vivo antitumor efficacy revealed that the BCG-CWS-loaded liposomes effectively inhibited tumor growth in mice bearing MBT2 tumors. Dual ligand-functionalized liposome was also superior to single ligand-functionalized liposomes. Immunohistochemistry supported the enhanced antitumor effect of BCG-CWS, with IL-6 production and CD4 infiltration. Thus, we conclude that FA- and Pep1-modified liposomes encapsulating BCG-CWS might be a good candidate for bladder cancer treatment with high target selectivity.

5.
J Cell Biochem ; 120(11): 19186-19201, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297862

RESUMO

Rapamycin is well-recognized in the clinical therapeutic intervention for patients with cancer by specifically targeting mammalian target of rapamycin (mTOR) kinase. Rapamycin regulates general autophagy to clear damaged cells. Previously, we identified increased expression of messenger RNA levels of NBR1 (the neighbor of BRCA1 gene; autophagy cargo receptor) in human urothelial cancer (URCa) cells, which were not exhibited in response to rapamycin treatment for cell growth inhibition. Autophagy plays an important role in cellular physiology and offers protection against chemotherapeutic agents as an adaptive response required for maintaining cellular energy. Here, we hypothesized that loss of NBR1 sensitizes human URCa cells to growth inhibition induced by rapamycin treatment, leading to interruption of protective autophagic activation. Also, the potential role of mitochondria in regulating autophagy was tested to clarify the mechanism by which rapamycin induces apoptosis in NBR1-knockdown URCa cells. NBR1-knockdown URCa cells exhibited enhanced sensitivity to rapamycin associated with the suppression of autophagosomal elongation and mitochondrial defects. Loss of NBR1 expression altered the cellular responses to rapamycin treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species (ROS). Although rapamycin treatment-induced autophagy by adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in NBR1-knockdown cells, it did not process the conjugated form of LC3B-II after activation by unc-51 like autophagy-activating kinase 1 (ULK1). NBR1-knockdown URCa cells exhibited rather profound mitochondrial dysfunctions in response to rapamycin treatment as evidenced by Δψm collapse, ATP depletion, ROS accumulation, and apoptosis activation. Therefore, our findings provide a rationale for rapamycin treatment of NBR1-knockdown human urothelial cancer through the regulation of autophagy and mitochondrial dysfunction by regulating the AMPK/mTOR signaling pathway, indicating that NBR1 can be a potential therapeutic target of human urothelial cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Mitocôndrias/metabolismo , Proteínas de Neoplasias/deficiência , Sirolimo/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Neoplasias/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
6.
Front Plant Sci ; 4: 277, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23898340

RESUMO

Reactive oxygen species (ROS) can be generated during the course of normal aerobic metabolism or when an organism is exposed to a variety of stress conditions. It can cause a widespread damage to intracellular macromolecules and play a causal role in many degenerative diseases. Like other aerobic organisms plants are also equipped with a wide range of antioxidant redox proteins, such as superoxide dismutase, catalase, glutaredoxin, thioredoxin (Trx), Trx reductase, protein disulfide reductase, and other kinds of peroxidases that are usually significant in preventing harmful effects of ROS. To defend plant cells in response to stimuli, a part of redox proteins have shown to play multiple functions through the post-translational modification with a redox-dependent manner. For the alternative switching of their cellular functions, the redox proteins change their protein structures from low molecular weight to high molecular weight (HMW) protein complexes depending on the external stress. The HMW proteins are reported to act as molecular chaperone, which enable the plants to enhance their stress tolerance. In addition, some transcription factors and co-activators have function responding to environmental stresses by redox-dependent structural changes. This review describes the molecular mechanism and physiological significance of the redox proteins, transcription factors and co-activators to protect the plants from environmental stresses through the redox-dependent structural and functional switching of the plant redox proteins.

7.
FEBS Lett ; 586(19): 3493-9, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22967894

RESUMO

Based on the fact that the amino acid sequence of sulfiredoxin (Srx), already known as a redox-dependent sulfinic acid reductase, showed a high sequence homology with that of ParB, a nuclease enzyme, we examined the nucleic acid binding and hydrolyzing activity of the recombinant Srx in Arabidopsis (AtSrx). We found that AtSrx functions as a nuclease enzyme that can use single-stranded and double-stranded DNAs as substrates. The nuclease activity was enhanced by divalent cations. Particularly, by point-mutating the active site of sulfinate reductase, Cys (72) to Ser (AtSrx-C72S), we demonstrate that the active site of the reductase function of AtSrx is not involved in its nuclease function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cátions Bivalentes/farmacologia , DNA de Plantas/genética , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Dados de Sequência Molecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Ácidos Sulfínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...