Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ginseng Res ; 44(1): 50-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32148389

RESUMO

BACKGROUND: The cellular senescence of primary cultured cells is an irreversible process characterized by growth arrest. Restoration of senescence by ginsenosides has not been explored so far. Rg3(S) treatment markedly decreased senescence-associated ß-galactosidase activity and intracellular reactive oxygen species levels in senescent human dermal fibroblasts (HDFs). However, the underlying mechanism of this effect of Rg3(S) on the senescent HDFs remains unknown. METHODS: We performed a label-free quantitative proteomics to identify the altered proteins in Rg3(S)-treated senescent HDFs. Upregulated proteins induced by Rg3(S) were validated by real-time polymerase chain reaction and immunoblot analyses. RESULTS: Finally, 157 human proteins were identified, and variable peroxiredoxin (PRDX) isotypes were highly implicated by network analyses. Among them, the mitochondrial PRDX3 was transcriptionally and translationally increased in response to Rg3(S) treatment in senescent HDFs in a time-dependent manner. CONCLUSION: Our proteomic approach provides insights into the partial reversing effect of Rg3 on senescent HDFs through induction of antioxidant enzymes, particularly PRDX3.

2.
J Ginseng Res ; 44(2): 341-349, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32148417

RESUMO

BACKGROUND: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. METHODS: We performed senescence-associated ß-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. RESULTS: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. CONCLUSION: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

3.
Am J Transl Res ; 11(11): 6890-6906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814895

RESUMO

Cordycepin, the major active component from Cordyceps militaris, has been reported to significantly inhibit some types of cancer; however, its effects on ovarian cancer are still not well understood. In this study, we treated human ovarian cancer cells with different doses of cordycepin and found that it dose-dependently reduced ovarian cancer cell viability, based on Cell counting kit-8 reagent. Immunoblotting showed that cordycepin increased Dickkopf-related protein 1 (Dkk1) levels and inhibited ß-catenin signaling. Atg7 knockdown in ovarian cancer cells significantly inhibited cordycepin-induced apoptosis, whereas ß-catenin overexpression abolished the effects of cordycepin on cell death and proliferation. Furthermore, we found that Dkk1 overexpression by transfection downregulated the expression of c-Myc and cyclin D1. siRNA-mediated Dkk1 silencing downregulated the expression of Atg8, beclin, and LC3 and promoted ß-catenin translocation from the cytoplasm into the nucleus. These results suggest that cordycepin inhibits ovarian cancer cell growth, possibly through coordinated autophagy and Dkk1/ß-catenin signaling. Taken together, our findings provide new insights into the treatment of ovarian cancer using cordycepin.

4.
Aging (Albany NY) ; 11(11): 3731-3749, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31199782

RESUMO

Nectandrin B (NecB) is a bioactive lignan compound isolated from Myristica fragrans (nutmeg), which functions as an activator of AMP-activated protein kinase (AMPK). Because we recently found that treatment with NecB increased the cell viability of old human diploid fibroblasts (HDFs), the underlying molecular mechanism was investigated. NecB treatment in old HDFs reduced the activity staining of senescence-associated ß-galactosidase and the levels of senescence markers, such as the Ser15 phosphorylated p53, caveolin-1, p21waf1, p16ink4a, p27kip1, and cyclin D1. NecB treatment increased that in S phase, indicating a enhancement of cell cycle entry. Interestingly, NecB treatment ameliorated age-dependent activation of AMPK in old HDFs. Moreover, NecB reversed the age-dependent expression and/or activity changes of certain sirtuins (SIRT1-5), and cell survival/death-related proteins. The transcriptional activity of Yin-Yang 1 and the expression of downstream proteins were elevated in NecB-treated old HDFs. In addition, NecB treatment exerted a radical scavenging effect in vitro, reduced cellular ROS levels, and increased antioxidant enzymes in old HDFs. Moreover, NecB-mediated activation of the AMPK pathway reduced intracellular ROS levels. These results suggest that NecB-induced protection against cellular senescence is mediated by ROS-scavenging through activation of AMPK. NecB might be useful in ameliorating age-related diseases and extending human lifespan.


Assuntos
Adenilato Quinase/metabolismo , Senescência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Lignanas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Diploide , Fibroblastos/metabolismo , Humanos , Fosforilação , Sirtuínas/metabolismo
5.
Am J Chin Med ; : 1-18, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30284465

RESUMO

The cytokine C-X-C motif chemokine ligand 8 (CXCL8) is produced in the tumor microenvironment and has an important role in cancer pathogenesis. CXCL8 activates the nuclear factor (NF)-[Formula: see text]B signaling. However, the role of NF-[Formula: see text]B inactivation in apoptosis induced by negative regulation of CXCL8 remains unclear. Here, we assessed the effects of MRGX on the transcriptional activity of NF-[Formula: see text]B and the expression of tumor necrosis factor (TNF)-[Formula: see text]-stimulated target genes in liver cancer cells. Furthermore, we found that modified regular ginseng extract (MRGX)-mediated inhibition of NF-[Formula: see text]B signaling induced apoptosis. Importantly, MRGX exerted strong activity, inhibiting TNF-[Formula: see text]-induced expression of Akt and NF-[Formula: see text]B in a concentration-dependent manner. Furthermore, MRGX inhibited the TNF-[Formula: see text]-induced expression of genes encoding CXCL8, CXCL1, inducible nitric oxide synthase and intercellular adhesion molecule 1. MRGX also dowregulated Akt activation, and there was a significant decrease in Akt activation in HepG2 cells treated with CXCL8 siRNA. Conversely, CXCL8 overexpression increased Akt activation in MRGX-treated HepG2 cells. When Akt was silenced, MRGX treatment of HepG2 cells overexpressing CXCL8 decreased nuclear translocation of NF-[Formula: see text]B, whereas Akt overexpression increased nuclear translocation of NF-[Formula: see text]B in MRGX-treated HepG2 cells. Moreover, MRGX negatively regulated the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote Bax activation, resulting in caspase-3 activation and apoptosis. Taken together, these results indicated that MRGX inhibited CXCL8-mediated Akt/NF-[Formula: see text]B signaling, which upregulated Bax activation and consequently induced apoptosis in HepG2 cells.

6.
Cell Death Discov ; 4: 62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844932

RESUMO

The chemokine, CCL5, is a key mediator for the recruitment of immune cells into tumors and tissues. Akt/NF-κB signaling is significantly activated by CCL5. However, the role of NF-κB inactivation in apoptosis induced by negative regulation of CCL5 remains unclear. Here, we analyzed the effect of cordycepin on NF-κB activity in SKOV-3 cells and found that cordycepin-mediated inhibition of NF-κB signaling induced apoptosis in SKOV-3 cells via the serial activation of caspases. In addition, immune-blotting analysis showed that CCL5 is highly expressed in SKOV-3 cells. In addition to activating caspases, we show that, cordycepin prevents TNF-α-induced increase in CCL5, Akt, NF-κB, and c-FLIPL activation and that CCL5 siRNA could inhibit Akt/NF-κB signaling. Moreover, cordycepin negatively regulated the TNF-α-mediated IκB/NF-κB pathway and c-FLIPL activation to promote JNK phosphorylation, resulting in caspase-3 activation and apoptosis. Also, we show that c-FLIPL is rapidly lost in NF-κB activation-deficient. siRNA mediated c-FLIP inhibition increased JNK. SP600125, a selective JNK inhibitor, downregulated p-JNK expression in cordycepin-treated SKOV-3 cells, leading to suppression of cordycepin-induced apoptosis. Thus, these results indicate that cordycepin inhibits CCL5-mediated Akt/NF-κB signaling, which upregulates caspase-3 activation in SKOV-3 cells, supporting the potential of cordycepin as a therapeutic agent for ovarian cancer.

7.
PLoS One ; 12(10): e0186489, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29045468

RESUMO

Cellular FLICE inhibitory protein (c-FLIP) is a key anti-apoptotic regulator that associates with the signaling complex downstream of NF-κB, negatively interfering with apoptotic signaling. The role of c-FLIP downregulation by negative regulation of NF-κB signaling during apoptosis is poorly understood. Here, we demonstrate that NF-κB-mediated c-FLIPL negatively regulates the JNK signaling pathway, and that cordycepin treatment of human renal cancer cells leads to apoptosis induction through c-FLIPL inhibition. TNF-α-induced inflammatory microenvironments stimulated NF-κB signaling and the c-FLIP long form (c-FLIPL) in TK-10 cells. Specifically, cordycepin inhibited TNF-α-mediated NF-κB activation, which induced renal cancer cell apoptosis. Cordycepin downregulated GADD45B and c-FLIPL, but upregulated MKK7 and phospho-JNK, by preventing nuclear mobilization of NF-κB. Furthermore, siRNA-mediated knockdown of GADD45B in cordycepin-treated TK-10 cells considerably increased MKK7 compared to cordycepin alone. siRNA-mediated knockdown of c-FLIPL prevented TNF-α-induced JNK inactivation, whereas c-FLIPL overexpression inhibited cordycepin-mediated JNK activation. The JNK inhibitor SP600125 strongly inhibited Bax expression. In nude mice, cordycepin significantly decreased tumor volume. Taken together, the results indicate that cordycepin inhibits TNF-α-mediated NF-κB/GADD45B signaling, which activates the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression, thus inducing TK-10 cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/patologia , Desoxiadenosinas/farmacologia , MAP Quinase Quinase 7/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Antígenos de Diferenciação/metabolismo , Apoptose/genética , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Proteína X Associada a bcl-2/metabolismo
8.
Integr Cancer Ther ; 16(3): 360-372, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27698266

RESUMO

Houttuynia cordata Thunb ( H cordata), a medicinal plant, has anticancer activity, as it inhibits cell growth and induces cell apoptosis in cancer. However, the potential anti-cancer activity and mechanism of H cordata for human liver cancer cells is not well understood. Recently, we identified hypoxia-inducible factor (HIF)-1A, Forkhead box (FOX)O3, and MEF2A as proapoptotic factors induced by H cordata, suggesting that HIF-1A, FOXO3, and MEF2A contribute to the apoptosis of HepG2 hepatocellular carcinoma cells. FOXO3 transcription factors regulate target genes involved in apoptosis. H cordata significantly increased the mRNA and protein expression of HIF-1A and FOXO3 and stimulated MEF2A expression in addition to increased apoptosis in HepG2 cells within 24 hours. Therefore, we determined the potential role of FOXO3 on apoptosis and on H cordata-induced MEF2A in HepG2 cells. HIF-1A silencing by siRNA attenuated MEF2A and H cordata-mediated FOXO3 upregulation in HepG2 cells. Furthermore, H cordata-mediated MEF2A expression enhanced caspase-3 and caspase-7, which were abolished on silencing FOXO3 with siRNA. In addition, H cordata inhibited growth of human hepatocellular carcinoma xenografts in nude mice. Taken together, our results demonstrate that H cordata enhances HIF-1A/FOXO3 signaling, leading to MEF2A upregulation in HepG2 cells, and in parallel, it disturbs the expression of Bcl-2 family proteins (Bax, Bcl-2, and Bcl-xL), which results in apoptosis. Taken together, these findings demonstrate that H cordata promotes the activation of HIF-1A-FOXO3 and MEF2A pathways to induce apoptosis in human HepG2 hepatocellular carcinoma cells and is, therefore, a promising candidate for antitumor drug development.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Proteína Forkhead Box O3/metabolismo , Houttuynia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Am J Chin Med ; 44(8): 1719-1735, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27848251

RESUMO

Nuclear factor-[Formula: see text]B (NF-[Formula: see text]B)/Rel transcription factors are best known for their central roles in promoting cell survival in cancer. NF-[Formula: see text]B antagonizes tumor necrosis factor (TNF)-[Formula: see text]-induced apoptosis through a process involving attenuation of the c-Jun-N-terminal kinase (JNK). However, the role of JNK activation in apoptosis induced by negative regulation of NF-[Formula: see text]B is not completely understood. We found that allergen-removed Rhus verniciflua Stokes (aRVS) extract-mediated NF-[Formula: see text]B inhibition induces apoptosis in SKOV-3 ovarian cancer cells via the serial activation of caspases and SKOV-3 cells are most specifically suppressed by aRVS. Here, we show that in addition to activating caspases, aRVS extract negatively modulates the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote JNK activation, which results in apoptosis. When the cytokine TNF-[Formula: see text] binds to the TNF receptor, I[Formula: see text]B dissociates from NF-[Formula: see text]B. As a result, the active NF-[Formula: see text]B translocates to the nucleus. aRVS extract (0.5[Formula: see text]mg/ml) clearly prevented NF-[Formula: see text]B from mobilizing to the nucleus, resulting in the upregulation of JNK phosphorylation. This subsequently increased Bax activation, leading to marked aRVS-induced apoptosis, whereas the JNK inhibitor SP600125 in aRVS extract treated SKOV-3 cells strongly inhibited Bax. Bax subfamily proteins induced apoptosis through caspase-3. Thus, these results indicate that aRVS extract contains components that inhibit NF-[Formula: see text]B signaling to upregulate JNK activation in ovarian cancer cells and support the potential of aRVS as a therapeutic agent for ovarian cancer.


Assuntos
Alérgenos/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Extratos Vegetais/farmacologia , Rhus/química , Caspases/metabolismo , Feminino , Humanos , Proteínas I-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosforilação/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Receptores do Fator de Necrose Tumoral/metabolismo , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/antagonistas & inibidores
10.
Am J Chin Med ; 44(5): 1081-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27430913

RESUMO

Urokinase receptor (uPAR) is enhanced in many human cancer cells and is frequently an indicator of poor prognosis. Activation of [Formula: see text]1-integrin requires caveolin-1 and is regulated by uPAR. However, the underlying molecular mechanism responsible for the interaction between uPAR and [Formula: see text]1-integrin remains obscure. We found that modified regular Panax ginseng extract (MRGX) had a negative modulating effect on the uPAR/[Formula: see text]1-integrin interaction, disrupted the uPAR/integrin interaction by modulating caveoline-1, and caused early apoptosis in cancer cells. Additionally, we found that siRNA-mediated caveoline-1 downregulation inhibited uPAR-mediated [Formula: see text]1-integrin signaling, whereas caveoline-1 up-regulation stimulated the signaling, which suppressed p53 expression, thereby indicating negative crosstalk exists between the integrin [Formula: see text]1 and the p53 pathways. Thus, these findings identify a novel mechanism whereby the inhibition of [Formula: see text]1 integrin and the activation of p53 modulate the expression of the anti-apoptotic proteins that are crucially involved in inducing apoptosis in A549 lung cancer cells. Furthermore, MRGX causes changes in the expressions of members of the Bcl-2 family (Bax and Bcl-2) in a pro-apoptotic manner. In addition, MGRX-mediated inhibition of [Formula: see text]1 integrin attenuates ERK phosphorylation (p-ERK), which up-regulates caspase-8 and Bax. Therefore, ERK may affect mitochondria through a negative regulation of caspase-8 and Bax. Taken together, these findings reveal that MRGX is involved in uPAR-[Formula: see text]1-integrin signaling by modulating caveolin-1 signaling to induce early apoptosis in A549 lung-cancer cells and strongly indicate that MRGX might be useful as a herbal medicine and may lead to the development of new herbal medicine that would suppress the growth of lung-cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Integrina alfa5beta1/metabolismo , Neoplasias Pulmonares/fisiopatologia , Panax/química , Extratos Vegetais/farmacologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Caspase 8/genética , Caspase 8/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Humanos , Integrina alfa5beta1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
11.
FASEB J ; 30(9): 3107-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27247127

RESUMO

Diabetes mellitus is a complex and heterogeneous disease, which has ß-cell dysfunction at its core. Glucotoxicity affects pancreatic islets, causing ß-cell apoptosis. However, the role of JNK/ß-catenin signaling in glucotoxic ß-cell apoptosis is not well understood. Recently, we identified tetraspanin-2 (TSPAN2) protein as a proapoptotic ß-cell factor induced by glucose, suggesting that TSPAN2 might contribute to pancreatic ß-cell glucotoxicity. To investigate the effects of glucose concentration on TSPAN2 expression and apoptosis, we used reverted immortalized RNAKT-15 human pancreatic ß cells. High TSPAN2 levels up-regulated phosphorylated (p) JNK and induced apoptosis. p-JNK enhanced the phosphorylation of ß-catenin and Dickkopf-1 (Dkk1). Dkk1 knockdown by small interfering (si)RNA up-regulated nuclear ß-catenin, suggesting that it is a JNK/ß-catenin-dependent pathway. siRNA-mediated TSPAN2 depletion in RNAKT-15 cells increased nuclear ß-catenin. This decreased BCL2-associated X protein (Bax) activation, leading to marked protection against high glucose-induced apoptosis. Bax subfamily proteins induced apoptosis through caspase-3. Thus, TSPAN2 might have induced Bax translocation and caspase-3 activation in pancreatic ß cells, thereby promoting the apoptosis of RNAKT-15 cells by regulating the JNK/ß-catenin pathway in response to high glucose concentrations. Targeting TSPAN2 could be a potential therapeutic strategy to treat glucose toxicity-induced ß-cell failure.-Hwang, I.-H., Park, J., Kim, J. M., Kim, S. I., Choi, J.-S., Lee, K.-B., Yun, S. H., Lee, M.-G., Park, S. J., Jang, I.-S. Tetraspanin-2 promotes glucotoxic apoptosis by regulating the JNK/ß-catenin signaling pathway in human pancreatic ß cells.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/toxicidade , Células Secretoras de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tetraspaninas/metabolismo , beta Catenina/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/administração & dosagem , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/fisiologia , Tetraspaninas/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , beta Catenina/genética
12.
Aging Cell ; 15(2): 245-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26696133

RESUMO

Phenyl-2-pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near-senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose- and time-dependent manner and resulted in senescence-associated ß-galactosidase (SA-ß-gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence-associated proteins, such as phosphorylated ERK1/2, caveolin-1, p53, p16(ink4a), and p21(waf1), were elevated in PPKO-treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N-acetylcysteine, 2,2,6,6-tetramethylpiperidinyloxy, and L-buthionine-(S,R)-sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L-NG-nitroarginine methyl ester and L-NG-monomethylarginine, PPKO-induced transient NO production and SA-ß-gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence-associated proteins.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Óxido Nítrico/biossíntese , Oximas/farmacologia , Senescência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/biossíntese , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...