Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 17(7): 1715-1723, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33538288

RESUMO

Biofouling of tubular fluidic devices limits the stability, accuracy, and long-term uses of lab-on-a-chip systems. Healthcare-associated infection by biofilm formations on body-indwelling and extracorporeal tubular medical devices is also a major cause of mortality and morbidity in patients. Although diverse antifouling techniques have been developed to prevent bacterial contamination of fluidic devices based on antimicrobial materials or nanoscale architectures, they still have limitations in biocompatibility, long-term activity, and durability. In this study, a new conceptual tubular fluidic device model that can effectively suppress bacterial contamination based on dynamic surface motions without using bactericidal materials or nanostructures is proposed. The fluidic device is composed of a magneto-responsive multilayered composite. The composite tube can generate dynamic surface deformation with controlled geometries along its inner wall in response to a remote magnetic field. The magnetic field-derived surface wave induces the generation of vortices near the inner wall surface of the tube, enabling sweeping of bacterial cells from the surface. As a result, the dynamic composite tube could effectively prevent biofilm formation for an extended time of 14 days without surface modification with chemical substances or nanostructures.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Nanoestruturas , Antibacterianos , Bactérias , Biofilmes , Incrustação Biológica/prevenção & controle , Humanos
2.
Sensors (Basel) ; 20(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291510

RESUMO

Flexible tactile sensors are required to maintain conformal contact with target objects and to differentiate different tactile stimuli such as strain and pressure to achieve high sensing performance. However, many existing tactile sensors do not have the ability to distinguish strain from pressure. Moreover, because they lack intrinsic adhesion capability, they require additional adhesive tapes for surface attachment. Herein, we present a self-attachable, pressure-insensitive strain sensor that can firmly adhere to target objects and selectively perceive tensile strain with high sensitivity. The proposed strain sensor is mainly composed of a bioinspired micropillar adhesive layer and a selectively coated active carbon nanotube (CNT) layer. We show that the bioinspired adhesive layer enables strong self-attachment of the sensor to diverse planar and nonplanar surfaces with a maximum adhesion strength of 257 kPa, while the thin film configuration of the patterned CNT layer enables high strain sensitivity (gauge factor (GF) of 2.26) and pressure insensitivity.

3.
Sensors (Basel) ; 20(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756512

RESUMO

A variety of sensor systems have been developed to monitor the structural health status of buildings and infrastructures. However, most sensor systems for structural health monitoring (SHM) are difficult to use in extreme conditions, such as a fire situation, because of their vulnerability to high temperature and physical shocks, as well as time-consuming installation process. Here, we present a smart ball sensor (SBS) that can be immediately installed on surfaces of structures, stably measure vital SHM data in real time and wirelessly transmit the data in a high-temperature fire situation. The smart ball sensor mainly consists of sensor and data transmission module, heat insulator and adhesive module. With the integrated device configuration, the SBS can be strongly attached to the target surface with maximum adhesion force of 233.7-N and stably detect acceleration and temperature of the structure without damaging the key modules of the systems even at high temperatures of up to 500 °C while ensuring wireless transmission of the data. Field tests for a model pre-engineered building (PEB) structure demonstrate the validity of the smart ball sensor as an instantly deployable, high-temperature SHM system. This SBS can be used for SHM of a wider variety of structures and buildings beyond PEB structures.

4.
Soft Matter ; 15(29): 5827-5834, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31232414

RESUMO

Many research groups have studied biomimetic functional surfaces for practical applications. Dry adhesives inspired by the gecko foot consist of hierarchical and numerous micro/nano hairs and can achieve pull-off strengths for vertical and shear adhesion of up to 20 N cm-2. However, when detachment of the nearly dry adhesive is carried out by peeling, the pull-off strength of the dry adhesive in the tilted state is remarkably reduced. In this study, an enhanced pull-off strength dry adhesive in the tilted state was fabricated by using a strategy that reduces the restoring force from the bending moment. An experiment with various column-type dry adhesives was implemented to find the relation between the pull-off strength in the tilted state and the bending resistance of the dry adhesive. The feasibility of using a dry adhesive in the tilted state was observed through a glass-lifting experiment. This strategy could be widely utilized in many practical applications, such as robotics.

5.
Adv Healthc Mater ; 7(15): e1800275, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29757494

RESUMO

A skin adhesive patch is the most fundamental and widely used medical device for diverse health-care purposes. Conventional skin adhesive patches have been mainly utilized for routine medical purposes such as wound management, fixation of medical devices, and simple drug release. In contrast to traditional skin adhesive patches, recently developed patches incorporate multiple key functions of bulky medical devices into a thin, flexible patch based on emerging nanomaterials and flexible electronic technologies. Consequently, the meaning of the term "skin adhesive patch" becomes broader and smarter compared to the traditional term. This review summarizes recent efforts undertaken in the development of multifunctional advanced skin adhesive patches, and briefly describes future directions and challenges toward the next generation of smart skin adhesive patches for ubiquitous personalized health care.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Adesivo Transdérmico , Administração Cutânea , Humanos
6.
ACS Appl Mater Interfaces ; 6(16): 14590-9, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25115997

RESUMO

A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.


Assuntos
Resinas Acrílicas/química , Polímeros/química , Poliuretanos/química , Adesivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...