Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732747

RESUMO

Fiber-reinforced composites (FRPs) are characterized by their lightweight nature and superior mechanical characteristics, rendering them extensively utilized across various sectors such as aerospace and automotive industries. Nevertheless, the precise mechanisms governing the interaction between the fibers present in FRPs and the polymer melt during industrial processing, particularly the manipulation of the flow-fiber coupling effect, remain incompletely elucidated. Hence, this study introduces a geometrically symmetrical 1 × 4 multi-cavity mold system, where each cavity conforms to the ASTM D638 Type V standard specimen. The research utilizes theoretical simulation analysis and experimental validation to investigate the influence of runner and overflow design on the flow-fiber coupling effect. The findings indicate that the polymer melt, directed by a geometrically symmetrical runner, results in consistent fiber orientation within each mold cavity. Furthermore, in the context of simulation analysis, the inclusion of the flow-fiber coupling effect within the system results in elevated sprue pressure levels and an expanded core layer region in comparison to systems lacking this coupling effect. This observation aligns well with the existing literature on the subject. Moreover, analysis of fiber orientation in different flow field areas reveals that the addition of an overflow area alters the flow field, leading to a significant delay in the flow-fiber coupling effect. To demonstrate the impact of overflow area design on the flow-fiber effect, the integration of fiber orientation distribution analysis highlights a transformation in fiber arrangement from the flow direction to cross-flow and thickness directions near the end-of-fill region in the injected part. Additionally, examination of the geometric dimensions of the injected part reveals asymmetrical geometric shrinkage between upstream and downstream areas in the end-of-fill region, consistent with microscopic fiber orientation changes influenced by the delayed flow-fiber coupling effect guided by the overflow area. In brief, the introduction of the overflow area extends the duration in which the polymer melt exerts control in the flow direction, consequently prolonging the period in which the fiber orientation governs in the flow direction (A11). This leads to the impact of fiber orientation on the flow of the polymer melt, with the flow reciprocally affecting the fibers. Subsequently, the interaction between these two elements persists until a state of equilibrium is achieved, known as the flow-fiber coupling effect, which is delayed.

2.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674978

RESUMO

Injection molding is a highly nonlinear procedure that is easily influenced by various external factors, thereby affecting the stability of the product's quality. High-speed injection molding is required for production due to the rapid cooling characteristics of thin-walled parts, leading to increased manufacturing complexity. Consequently, establishing appropriate process parameters for maintaining quality stability in long-term production is challenging. This study selected a hot runner mold with a thin wall fitted with two external sensors, a nozzle pressure sensor and a tie-bar strain gauge, to collect data regarding the nozzle peak pressure, the timing of peak pressure, the viscosity index, and the clamping force difference value. The product weight was defined as the quality indicator, and a standardized parameter optimization process was constructed, including injection speed, V/P switchover point, packing, and clamping force. Finally, the optimized process parameters were applied to the adaptive process control experiments using the developed control system operated within the micro-controller unit (MCU). The results revealed that the control system effectively stabilized the product weight variation and standard deviation of 0.677% and 0.0178 g, respectively.

3.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177261

RESUMO

Plastic foam molding methods include thermoforming, extrusion and injection molding. Injection foam molding is a one-time molding method with high production efficiency and good product quality. It is suitable for foamed plastic products with complex shapes and strict size requirements. It is also the main method for producing structural bubbles. In this investigation, we developed a structural foam injection molding technology using the gas supply equipment connected to the unique plasticizing mechanism of the injection machine and studied its influence on the specimens' melt rheology quality and foam structures. In the experiment, the forming material was polypropylene (PP), and the gas for mixing/forming foaming characteristics was nitrogen (N2). Additionally, in order to observe the rheological properties of N2/melt mixing, a melt flow specimen mold cavity was designed and the change in the melt viscosity index was observed using a melt pressure sensing element installed at the nozzle position. With the nitrogen supply equipment connected to a unique plasticizing mechanism, the mixing of gas and molten plastic can be achieved at the screw plasticizing stage, where the foaming effect is realized during the melt-filling process due to the thermodynamic instability of the gas. It was also found that an increase in N2 fill content increased melt fluidity, and the trend of melt pressure and melt viscosity index showed that the higher the gas content, the lower the trend. The foaming characteristic depends on the gas thermodynamic instability and the pressure release, so it can be seen from the melt fill path that, the greater the pressure near the gate, the lower the foaming amount and the internal structure (SEM) after molding; the farther from the gate, the greater the relative increase in the foaming growth/amount. This phenomenon will be more obvious when the N2 fill content is increased.

4.
Polymers (Basel) ; 15(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36771911

RESUMO

The injection-molding process is a non-linear process, and the product quality and long-term production stability are affected by several factors. To stabilize the product quality effected by these factors, this research establishes a standard process parameter setup procedure and an adaptive process control system based on the data collected by a nozzle pressure sensor and a tie-bar strain gauge to achieve this goal. In this research, process parameters such as the V/P switchover point, injection speed, packing pressure, and clamping force are sequentially optimized based on the characteristics of the pressure profile. After the optimization process, this research defines the standard quality characteristics through the optimized process parameters and combines it with the adaptive process control system in order to achieve the purpose of automatic adjustment of the machine and maintain high-quality production. Finally, three different viscosity materials are used to verify the effectiveness of the optimization procedure and the adaptive process control system. With the system, the variation of product weight was reduced to 0.106%, 0.092%, and 0.079%, respectively.

5.
Polymers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365589

RESUMO

The actual process of using a resin to glue can optimize many shortcomings in the basic traditional process of welding a motor core. For example, the use of a resin for gluing can lead to a reduction in iron loss, improve rigidity, reduce processing times, and improve product quality. When using a gluing method, the biggest challenge is the distribution of the resin; therefore, resin distribution is very much important. This experiment used fine mesh nets to eventually improve the unbalanced state of resin distribution. In this research, in order to predict real flow behavior during gluing, computer-aided engineering was used for computer simulation. The results of the simulation showed that the illustrated trend of the filling process was very much similar to the actual experimental results. The simulation results could mostly predict defects and make effective improvements, which can lead to a significant reduction in the money and time spent on experiments. The simulation results of the dipping process also showed that the distribution of resin with fine mesh nets was more even than without fine mesh nets. Fine mesh nets can eventually improve an over-flow problem, which, ultimately, causes bumps. In this research, a simulation analysis of the gluing process of a motor core with fine mesh nets was conducted, and the results show that the resin distribution and the flow front of the runner were more even than those without fine mesh nets.

6.
Int J Adv Manuf Technol ; 120(11-12): 7547-7563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530372

RESUMO

In this study, a multi-objective optimization of directed energy deposition (DED) process was conducted with Taguchi-Grey relational analysis. The used part was designed as a flat rectangle which would be deposited by a single-layer and multi-track DED process. Firstly, after finishing Taguchi experiments, the effects of five control factors (laser power, overlap ratio, powder feed rate, scanning speed and laser defocus distance) on three DED product qualities (cladding efficiency, surface roughness and porosity) were, respectively, analyzed. Then, through Grey relational analysis (GRA), an optimal factor setting which can take all qualities into account was found and had better deposition results compared with previous setting. Furthermore, ANOVAs were conducted to find out significant factors of each qualities. By using the significant factors as variations, three second-order polynomial regression predictive models for qualities were created. Based on the GRA and ANOVAs results, additional one-factor-at-a-time (OFAT) experiments which used the optimal setting as the center point were performed. The qualities variation resulting from adjusting overlap ratio and laser defocus distance of optimal setting were investigated, and the results were also used as additional data to verified the accuracies of three regression models.

7.
Polymers (Basel) ; 14(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458357

RESUMO

This research developed an adaptive control system for injection molding process. The purpose of this control system is to adaptively maintain the consistency of product quality by minimize the mass variation of injection molded parts. The adaptive control system works with the information collected through two sensors installed in the machine only-the injection nozzle pressure sensor and the temperature sensor. In this research, preliminary experiments are purposed to find master pressure curve that relates to product quality. Viscosity index, peak pressure, and timing of the peak pressure are used to characterize the pressure curve. The correlation between product quality and parameters such as switchover position and injection speed were used to produce a training data for back propagation neural network (BPNN) to compute weight and bias which are applied on the adaptive control system. By using this system, the variation of part weight is maintained to be as low as 0.14%.

8.
Polymers (Basel) ; 14(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35335583

RESUMO

Processing equipment and parameters will highly influence the properties of long-fiber-reinforced injection-molded thermoplastic composites, leading to different fiber lengths and orientations. Thus, maintaining fiber length during the injection molding process is always a big challenge for engineers. This study uses long-glass-fiber-reinforced polypropylene with 25 mm fiber length and a special-built novel injection molding machine with a three-barrel injection unit, including a plasticizing screw, an injection plunger, and a packing plunger, to fabricate injection molding parts while retaining long fiber length. This study also discusses the influence of process parameters, such as back pressure, screw speed, melt temperature, and different flow paths, on the properties of long-glass-fiber-reinforced composites. The experiment results show that a higher screw speed and back pressure will reduce the fiber length in the injection-molded parts. However, using appropriate parameter settings can maintain the fiber length to more than 10 mm. It was found that by increasing the back pressure, the cross direction of the fiber orientation can be increased by up to 15% and the air trap volume fraction can be decreased by up to 86%. Setting appropriate back pressure under a low screw speed will increase the tensile strength. Finally, it was found that the single-edge-gate path results in a higher tensile strength than that of the single-sprue-gate path due to the retainment of longer fiber length in the injection-molded part.

9.
Polymers (Basel) ; 13(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34372095

RESUMO

In this study, fiber breaking behavior, fiber orientation, length variation, and changes in melt flow ability of long glass fiber reinforced polypropylene (L-FRP) composites under different mold cavity geometry, melt fill path, and plasticization parameters were investigated. The matrix material used was polypropylene and the reinforcement fibers were 25 mm long. An ultra-long-fiber composite injection molding machine (with a three-stage plunger and injection mechanism design) was used with different mold cavity geometry and plasticization parameters. Different screw speeds were used to explore the changes in fiber length and to provide a reference for setting fiber length and parameter combinations. Flow-length specimen molds with different specimen thickness, melt fill path, and gate design were used to observe the effect of plasticizing properties on the flow ability of the L-FRP composite materials. The experimental results showed that the use of an injection molding machine with a mechanism that reduced the amount of fiber breakage was advantageous. It was also found that an increase in screw speed increased fiber breakage, and 25 mm long fibers were shortened by an average of 50% (to 10 mm). Long fibers were more resistant to melt filling than short fibers. In addition, the thickness of the specimen and the gate design were also found to affect the filling process. The rounded angle gate and thick wall product decreased the flow resistance and assisted the flow ability and fiber distribution of the L-FRP injection molding.

10.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209344

RESUMO

A motor core is formed by stacking iron sheets on top of each other. Traditionally, there are two stacking methods, riveting and welding, but these two methods will increase iron loss and reduce usage efficiency. The use of resin is the current developmental trend in the technology used to join iron sheets, which has advantages including lowering iron loss, smoothing magnetic circuits, and generating higher rigidity. The flow behavior of resin in gluing technology is very important because it affects the dipping of iron sheets and the stacking of iron sheets with resin. In this study, a set of analytical processes is proposed to predict the flow behavior of resin through the use of computer-aided engineering (CAE) tools. The research results are compared with the experimental results to verify the accuracy of the CAE tools in predicting resin flow. CAE tools can be used to predict results, modify modules for possible defects, and reduce the time and costs associated with experiments. The obtained simulation results showed that the filling trend was the same as that for the experimental results, where the error between the simulation results for the final dipping process and the target value was 0.6%. In addition, the position of air traps is also simulated in the dipping process.

11.
Polymers (Basel) ; 13(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668539

RESUMO

Injection molding is a popular process for the mass production of polymer products, but due to the characteristics of the injection process, there are many factors that will affect the product quality during the long fabrication processes. In this study, an adaptive adjustment system was developed by C++ programming to adjust the V/P switchover point and injection speed during the injection molding process in order to minimize the variation of the product weight. Based on a series of preliminary experiments, it was found that the viscosity index and peak pressure had a strong correlation with the weight of the injection-molded parts. Therefore, the viscosity index and peak pressure are used to guide the adjustment in the presented control system, and only one nozzle pressure sensor is used in the system. The results of the preliminary experiments indicate that the reduction of the packing time and setting enough clamping force can decrease the variation of the injected weight without turning on the adaptive control system; meanwhile, the master pressure curve obtained from the preliminary experiment was used as the control target of the system. With this system, the variation of the product weight and coefficient of variation (CV) of the product weight can be decreased to 0.21 and 0.05%, respectively.

12.
Sensors (Basel) ; 17(6)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617315

RESUMO

Although wafer-level camera lenses are a very promising technology, problems such as warpage with time and non-uniform thickness of products still exist. In this study, finite element simulation was performed to simulate the compression molding process for acquiring the pressure distribution on the product on completion of the process and predicting the deformation with respect to the pressure distribution. Results show that the single-gate compression molding process significantly increases the pressure at the center of the product, whereas the multi-gate compressing molding process can effectively distribute the pressure. This study evaluated the non-uniform thickness of product and changes in the process parameters through computer simulations, which could help to improve the compression molding process.

13.
Sensors (Basel) ; 17(5)2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28468324

RESUMO

Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.

14.
Bioelectromagnetics ; 38(3): 220-226, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28026048

RESUMO

Thermal ablation using alternating electromagnetic fields is a promising method to treat tissues including tumors. With this approach, an electromagnetic field is generated around an induction coil, which is supplied with high frequency current from a power source. Any electrically conducting object, which is placed in the electromagnetic field, is then heated due to eddy currents. Basic principles underlying this novel thermotherapy needle system are internal induction and resistance heating. This presents a new design of a standard gauge 18 percutaneous trans-hepatic cholangiography needle module combined with a compact power source. Three needle modules containing coils of different lengths were used to locally heat up different volumes of tissues in in vitro experiments on pig livers. Temperature on the inside surface of the needle was controlled and monitored through a K-type thermocouple. By using this needle module system, no two-section or ferromagnetic nanoparticle-coated needles were required; the system worked well with the SUS-304 stainless-steel needle. Successful results were demonstrated in the in vitro experiments on pig livers with different heating lengths of 10, 20, and 30 mm needles. With low power sources, needles could be heated up to a high temperature. The novel design of the needle module incorporated with a high frequency power source was thus shown to be a promising technology for tissue ablation. Bioelectromagnetics.38:220-226, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Colangiografia/instrumentação , Hipertermia Induzida/instrumentação , Agulhas , Animais , Campos Eletromagnéticos , Desenho de Equipamento , Hipertermia Induzida/métodos , Fígado/patologia , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...