Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
PLoS One ; 19(3): e0298128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527014

RESUMO

OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors are used for targeted therapy for ovarian cancer with homologous recombination deficiency (HRD). In this study, we aimed to develop a homologous recombination deficiency prediction model to predict the genomic integrity (GI) index of the SOPHiA DDM HRD Solution from the Oncomine Comprehensive Assay (OCA) Plus. We also tried to a find cut-off value of the genomic instability metric (GIM) of the OCA Plus that correlates with the GI index of the SOPHiA DDM HRD Solution. METHODS: We included 87 cases with high-grade ovarian serous carcinoma from five tertiary referral hospitals in Republic of Korea. We developed an HRD prediction model to predict the GI index of the SOPHiA DDM HRD Solution. As predictor variables in the model, we used the HRD score, which included percent loss of heterozygosity (%LOH), percent telomeric allelic imbalance (%TAI), percent large-scale state transitions (%LST), and the genomic instability metric (GIM). To build the model, we employed a penalized logistic regression technique. RESULTS: The final model equation is -21.77 + 0.200 × GIM + 0.102 × %LOH + 0.037 × %TAI + 0.261 × %LST. To improve the performance of the prediction model, we added a borderline result category to the GI results. The accuracy of our HRD status prediction model was 0.958 for the test set. The accuracy of HRD status using GIM with a cut-off value of 16 was 0.911. CONCLUSION: The Oncomine Comprehensive Assay Plus provides a reliable biomarker for homologous recombination deficiency.


Assuntos
Recombinação Homóloga , Neoplasias Ovarianas , Feminino , Humanos , Desequilíbrio Alélico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Poli(ADP-Ribose) Polimerases/genética , Instabilidade Genômica
2.
Cancer Sci ; 115(3): 989-1000, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226451

RESUMO

Chemotherapy combined with debulking surgery is the standard treatment protocol for high-grade serous ovarian carcinoma (HGSOC). Nonetheless, a significant number of patients encounter relapse due to the development of chemotherapy resistance. To better understand and address this resistance, we conducted a comprehensive study investigating the transcriptional alterations at the single-cell resolution in tissue samples from patients with HGSOC, using single-cell RNA sequencing and T-cell receptor sequencing techniques. Our analyses unveiled notable changes in the tumor signatures after chemotherapy, including those associated with epithelial-mesenchymal transition and cell cycle arrest. Within the immune compartment, we observed alterations in the T-cell profiles, characterized by naïve or pre-exhausted populations following chemotherapy. This phenotypic change was further supported by the examination of adjoining T-cell receptor clonotypes in paired longitudinal samples. These findings underscore the profound impact of chemotherapy on reshaping the tumor landscape and the immune microenvironment. This knowledge may provide clues for the development of future therapeutic strategies to combat treatment resistance in HGSOC.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Linfócitos T/patologia , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
3.
Cell Death Discov ; 9(1): 237, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422450

RESUMO

Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. TNBC patients have higher rates of metastasis and restricted therapy options. Although chemotherapy is the conventional treatment for TNBC, the frequent occurrence of chemoresistance significantly lowers the efficacy of treatment. Here, we demonstrated that ELK3, an oncogenic transcriptional repressor that is highly expressed in TNBC, determined the chemosensitivity of two representative TNBC cell lines (MDA-MB231 and Hs578T) to cisplatin (CDDP) by regulating mitochondrial dynamics. We observed that the knockdown of ELK3 in MDA-MB231 and Hs578T rendered these cell lines more susceptible to the effects of CDDP. We further demonstrated that the chemosensitivity of TNBC cells was caused by the CDDP-mediated acceleration of mitochondrial fission, excessive mitochondrial reactive oxygen species production, and subsequent DNA damage. In addition, we identified DNM1L, a gene encoding the dynamin-related protein 1 (a major regulator of mitochondrial fission), as a direct downstream target of ELK3. Based on these results, we propose that the suppression of ELK3 expression could be used as a potential therapeutic strategy for overcoming the chemoresistance or inducing the chemosensitivity of TNBC.

4.
Biomed Pharmacother ; 162: 114700, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062218

RESUMO

Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) that remove mono or polyubiquitin chains from target proteins. Depending on cancer types, USP7 has two opposing roles: oncogene or tumor suppressor. Moreover, it also known that USP7 functions in the cell cycle, apoptosis, DNA repair, chromatin remodeling, and epigenetic regulation through deubiquitination of several substrates including p53, mouse double minute 2 homolog (MDM2), Myc, and phosphatase and tensin homolog (PTEN). The [P/A/E]-X-X-S and K-X-X-X-K motifs of target proteins are necessary elements for the binding of USP7. In a previous study, we identified a novel substrate of USP7 through bioinformatics analysis using the binding motifs for USP7, and suggested that it can be an effective tool for finding new substrates for USP7. In the current study, gene ontology (GO) analysis revealed that putative target proteins having the [P/A/E]-X-X-S and K-X-X-K motifs are involved in transcriptional regulation. Moreover, through protein-protein interaction (PPI) analysis, we discovered that USP7 binds to the AVMS motif of ETS proto-oncogene 2 (ETS2) and deubiquitinates M1-, K11-, K27-, and K29-linked polyubiquitination of ETS2. Furthermore, we determined that suppression of USP7 decreases the protein stability of ETS2 and inhibits the transcriptional activity of ETS2 by disrupting the binding between the GGAA/T core motif and ETS2. Therefore, we propose that USP7 can be a novel target in cancers related to the dysregulation of ETS2.


Assuntos
Epigênese Genética , Proteína Proto-Oncogênica c-ets-2 , Proteína Supressora de Tumor p53 , Peptidase 7 Específica de Ubiquitina , Proto-Oncogenes , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Humanos , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo
5.
Genes (Basel) ; 14(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37107543

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is a fatal gynecological malignancy. Somatic recombination occurring during T-cell receptor (TCR) development results in TCR diversity, and the TCR repertoire, thus produced, is associated with immune response. This study analyzed the difference in the TCR repertoire and their prognostic significance in 51 patients with HGSOC. The patient's clinical characteristics, gene expression pattern, TCR clonotypes, and degree of tumor-infiltrating leukocytes (TILs) were analyzed, and the patients were divided into groups depending on their recurrence pattern, tumor-infiltrating leukocyte (TIL) score, and homologous recombinant repair pathway deficiency (HRD)-associated mutations. The TCR repertoire was low in patients with recurrence and showed the expansion of eight TCR segments. Interestingly, a few genes correlated with the TCRs also showed a difference in expression according to the prognosis. Among them, seven genes were related to immune responses and KIAA1199 was up-regulated in ovarian cancer. Our study shows that the differences in the TCR repertoire in patients with ovarian cancer and their associated immune pathways could affect the prognosis of HGSOC.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Prognóstico , Neoplasias Ovarianas/patologia , Receptores de Antígenos de Linfócitos T , Mutação
6.
Genes (Basel) ; 14(4)2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-37107644

RESUMO

In ovarian cancer patients, the 5-year survival rate is 90% for stages I and II, but only 30% for stages III and IV. Unfortunately, as 75% of the patients are diagnosed at stages III and IV, many experience a recurrence. To ameliorate this, it is necessary to develop new biomarkers for early diagnosis and treatment. The ubiquitin-proteasome system is a post-translational modification that plays an important role in regulating protein stability through ubiquitination. In particular, deubiquitinating enzymes (DUBs) regulate protein stability through deubiquitinating substrate proteins. In this review, DUBs and substrates regulated by these enzymes are summarized based on their functions in ovarian cancer cells. This would be useful for the discovery of biomarkers for ovarian cancer and developing new therapeutic candidates.


Assuntos
Adenocarcinoma , Neoplasias Ovarianas , Humanos , Feminino , Ubiquitinação , Ubiquitina/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Neoplasias Ovarianas/genética
7.
J Clin Transl Hepatol ; 11(3): 747-750, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36969903

RESUMO

We report a case of a patient with c-MET amplified hepatocellular carcinoma (HCC) who had a dramatic response to cabozantinib despite being refractory to four previous lines of systemic therapy. The patient had previously received regorafenib plus nivolumab as first-line treatment, lenvatinib as second-line, sorafenib as third-line, and ipilimumab plus nivolumab as fourth-line treatment in sequence. However, all regimens showed early progression within 2 months. The patient's HCC was well-controlled, with a partial response (PR) of over 9 months after beginning cabozantinib treatment. Although there were mild adverse events such as diarrhea and elevated liver enzymes, they were tolerable. Next-generation sequencing (NGS) of the patient's previous surgical specimen indicated amplification of c-MET genes. Although it is well known that cabozantinib has excellent effectiveness for inhibiting c-MET at the preclinical level, to the best of our knowledge this is the first case of dramatic response to cabozantinib in a patient with advanced HCC with c-MET amplification.

8.
Nat Biotechnol ; 41(11): 1593-1605, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36797491

RESUMO

Identification of optimal target antigens that distinguish cancer cells from normal surrounding tissue cells remains a key challenge in chimeric antigen receptor (CAR) cell therapy for tumors with intratumoral heterogeneity. In this study, we dissected tissue complexity to the level of individual cells through the construction of a single-cell expression atlas that integrates ~1.4 million tumor, tumor-infiltrating normal and reference normal cells from 412 tumors and 12 normal organs. We used a two-step screening method using random forest and convolutional neural networks to select gene pairs that contribute most to discrimination between individual malignant and normal cells. Tumor coverage and specificity are evaluated for the AND, OR and NOT logic gates based on the combinatorial expression pattern of the pairing genes across individual single cells. Single-cell transcriptome-coupled epitope profiling validates the AND, OR and NOT switch targets identified in ovarian cancer and colorectal cancer.


Assuntos
Neoplasias Ovarianas , Linfócitos T , Feminino , Humanos , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias
9.
Cell Biosci ; 13(1): 17, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694264

RESUMO

BACKGROUND: Recurrent glioblastoma multiforme (GBM) is a highly aggressive primary malignant brain tumor that is resistant to existing treatments. Recently, we reported that activated autologous natural killer (NK) cell therapeutics induced a marked increase in survival of some patients with recurrent GBM. METHODS: To identify biomarkers that predict responsiveness to NK cell therapeutics, we examined immune profiles in tumor tissues using NanoString nCounter analysis and compared the profiles between 5 responders and 7 non-responders. Through a three-step data analysis, we identified three candidate biomarkers (TNFRSF18, TNFSF4, and IL12RB2) and performed validation with qRT-PCR. We also performed immunohistochemistry and a NK cell migration assay to assess the function of these genes. RESULTS: Responders had higher expression of many immune-signaling genes compared with non-responders, which suggests an immune-active tumor microenvironment in responders. The random forest model that identified TNFRSF18, TNFSF4, and IL12RB2 showed a 100% accuracy (95% CI 73.5-100%) for predicting the response to NK cell therapeutics. The expression levels of these three genes by qRT-PCR were highly correlated with the NanoString levels, with high Pearson's correlation coefficients (0.419 (TNFRSF18), 0.700 (TNFSF4), and 0.502 (IL12RB2)); their prediction performance also showed 100% accuracy (95% CI 73.54-100%) by logistic regression modeling. We also demonstrated that these genes were related to cytotoxic T cell infiltration and NK cell migration in the tumor microenvironment. CONCLUSION: We identified TNFRSF18, TNFSF4, and IL12RB2 as biomarkers that predict response to NK cell therapeutics in recurrent GBM, which might provide a new treatment strategy for this highly aggressive tumor.

10.
Cell Death Dis ; 13(8): 698, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948545

RESUMO

Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) in the ubiquitin-specific protease (USP) family. It is a key regulator of numerous cellular functions including immune response, cell cycle, DNA damage and repair, epigenetics, and several signaling pathways. USP7 acts by removing ubiquitin from the substrate proteins. USP7 also binds to a specific binding motif of substrate proteins having the [P/A/E]-X-X-S or K-X-X-X-K protein sequences. To date, numerous substrate proteins of USP7 have been identified, but no studies have been conducted using the binding motif that USP7 binds. In the current study, we analyzed putative substrate proteins of USP7 through the [P/A/E]-X-X-S and K-X-X-X-K binding motifs using bioinformatics tools, and confirmed that Raf-1 is one of the substrates for USP7. USP7 binds to the Pro-Val-Asp-Ser (PVDS) motif of the conserved region 2 (CR2) which contains phosphorylation sites of Raf-1 and decreased M1-, K6-, K11-, K27-, K33-, and K48-linked polyubiquitination of Raf-1. We further identified that the DUB activity of USP7 decreases the threonine phosphorylation level of Raf-1 and inhibits signaling transduction through Raf activation. This regulatory mechanism inhibits the activation of the ERK1/2 signaling pathway, thereby inhibiting the G2/M transition and the cell proliferation of lung adenocarcinoma cells. In summary, our results indicate that USP7 deubiquitinates Raf-1 and is a new regulator of the ERK1/2 signaling pathway in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Ubiquitina Tiolesterase , Adenocarcinoma de Pulmão/genética , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação
11.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858708

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is the most lethal subtype of breast cancer due to its aggressive behavior and frequent development of resistance to chemotherapy. Although natural killer (NK) cell-based immunotherapy is a promising strategy for overcoming barriers to cancer treatment, the therapeutic efficacy of NK cells against TNBC is below expectations. E26 transformation-specific transcription factor ELK3 (ELK3) is highly expressed in TNBCs and functions as a master regulator of the epithelial-mesenchymal transition. METHODS: Two representative human TNBC cell lines, MDA-MB231 and Hs578T, were exposed to ELK3-targeting shRNA or an ELK3-expressing plasmid to modulate ELK3 expression. The downstream target genes of ELK3 were identified using a combined approach comprising gene expression profiling and molecular analysis. The role of ELK3 in determining the immunosensitivity of TNBC to NK cells was investigated in terms of mitochondrial fission-fusion transition and reactive oxygen species concentration both in vitro and in vivo. RESULTS: ELK3-dependent mitochondrial fission-fusion status was linked to the mitochondrial superoxide concentration in TNBCs and was a main determinant of NK cell-mediated immune responses. We identified mitochondrial dynamics proteins of 51 (Mid51), a major mediator of mitochondrial fission, as a direct downstream target of ELK3 in TNBCs. Also, we demonstrated that expression of ELK3 correlated inversely with that of Mid51, and that the ELK3-Mid51 axis is associated directly with the status of mitochondrial dynamics. METABRIC analysis revealed that the ELK3-Mid51 axis has a direct effect on the immune score and survival of patients with TNBC. CONCLUSIONS: Taken together, the data suggest that NK cell responses to TNBC are linked directly to ELK3 expression levels, shedding new light on strategies to improve the efficacy of NK cell-based immunotherapy of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Células Matadoras Naturais , Dinâmica Mitocondrial , Proteínas Proto-Oncogênicas c-ets , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia
12.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628433

RESUMO

Alteration in expression of miRNAs can cause various malignant changes and the metastatic process. Our aim was to identify the miRNAs involved in cervical squamous cell carcinoma (SqCC) and metastasis, and to test their utility as indicators of metastasis and survival. Using microarray technology, we performed miRNA expression profiling on primary cervical SqCC tissue (n = 6) compared with normal control (NC) tissue and compared SqCC that had (SqC-M; n = 3) and had not (SqC-NM; n = 3) metastasized. Four miRNAs were selected for validation by qRT-PCR on 29 SqC-NM and 27 SqC-M samples, and nine metastatic lesions (ML-SqC), from a total of 56 patients. Correlation of miRNA expression and clinicopathological parameters was analyzed to evaluate the clinical impact of candidate miRNAs. We found 40 miRNAs differentially altered in cervical SqCC tissue: 21 miRNAs were upregulated and 19 were downregulated (≥2-fold, p < 0.05). Eight were differentially altered in SqC-M compared with SqC-NM samples: four were upregulated (miR-494, miR-92a-3p, miR-205-5p, and miR-221-3p), and four were downregulated (miR-574-3p, miR-4769-3p, miR-1281, and miR-1825) (≥1.5-fold, p < 0.05). MiR-22-3p might be a metastamiR, which was gradually further downregulated in SqC-NM > SqC-M > ML-SqC. Downregulation of miR-30e-5p significantly correlated with high stage, lymph node metastasis, and low survival rate, suggesting an independent poor prognostic factor.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética
13.
Genes (Basel) ; 13(3)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35327946

RESUMO

How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis in certain tissues, but not others, remain an important issue in cancer research. The underlying mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations. Recent advances in our understanding of the cancer genome and fundamental cellular processes on DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review, we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the initiation and development of BRCA1-associated tumors.


Assuntos
Carcinogênese , Quadruplex G , Neoplasias , Proteína BRCA1/genética , Carcinogênese/genética , Dano ao DNA , Reparo do DNA/genética , Replicação do DNA , Humanos , Neoplasias/genética
14.
Diagnostics (Basel) ; 12(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35328131

RESUMO

High-grade serous carcinoma (HGSCa) of the ovary is featured by TP53 gene mutation. Missense or nonsense mutation types accompany most cases of HGSCa that correlate well with immunohistochemical (IHC) staining results-an all (missense) or none (nonsense) pattern. However, some IHCs produce subclonal or mosaic patterns from which TP53 mutation types, including the wild type of the gene, cannot be clearly deduced. We analyzed a total of 236 cases of ovarian HGSCa and tumors of other histology by matching the results of p53 IHC staining and targeted next-generation sequencing (TruSight Tumor 170 panel). Ambiguous IHCs that do not belong to the conventional "all or none" groups were reviewed to distinguish the true wild type (WT) from potentially pathogenic subclonal or mosaic patterns. There were about 9% of sequencing-IHC mismatching cases, which were enriched by the p53 c-terminal encoding nuclear localization signal and oligomerization domain, in which the subcellular locations of p53 protein were affected. Indeed, mutations in the oligomerization domain of the p53 protein frequently revealed an unmatched signal or cytosolic staining (L289Ffs*57 (Ins), and R342*). We conclude that both mutation types and IHC patterns of p53 are important sources of information to provide a precise diagnosis of HGSCa.

15.
Mod Pathol ; 35(2): 202-209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34290355

RESUMO

Invasive mucinous adenocarcinoma (IMA) of the lung frequently presents with diffuse pneumonic-type features or multifocal lesions, which are regarded as a pattern of intrapulmonary metastases. However, the genomics of multifocal IMAs have not been well studied. We performed whole exome sequencing on samples taken from 2 to 5 regions in seven patients with synchronous multifocal IMAs of the lung (24 regions total). Early initiating driver events, such as KRAS, NKX2-1, TP53, or ARID1A mutations, are clonal mutations and were present in all multifocal IMAs in each patient. The tumor mutational burden of multifocal IMAs was low (mean: 1.13/mega base), but further analyses suggested intra-tumor heterogeneity. The mutational signature analysis found that IMAs were predominantly associated with endogenous mutational process (signature 1), APOBEC activity (signatures 2 and 13), and defective DNA mismatch repair (signature 6), but not related to smoking signature. IMAs synchronously located in the bilateral lower lobes of two patients with background usual interstitial pneumonia had different mutation types, suggesting that they were double primaries. In conclusion, genomic evidence found in this study indicated the clonal intrapulmonary spread of diffuse pneumonic-type or multifocal IMAs, although they can occur in multicentric origins in the background of usual interstitial pneumonia. IMAs exhibited a heterogeneous genomic landscape despite the low somatic mutation burden. Further studies are warranted to determine the clinical significance of the genomic characteristics of IMAs in expanded cohorts.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma Mucinoso , Neoplasias Pulmonares , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/patologia , Genômica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
16.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34959724

RESUMO

High-throughput screening of drug response in cultured cell lines is essential for studying therapeutic mechanisms and identifying molecular variants associated with sensitivity to drugs. Assessment of drug response is typically performed by constructing a dose-response curve of viability and summarizing it to a representative, such as IC50. However, this is limited by its dependency on the assay duration and lack of reflections regarding actual cellular response phenotypes. To address these limitations, we consider how each response-phenotype contributes to the overall growth behavior and propose an alternative method of drug response screening that takes into account the cellular response phenotype. In conventional drug response screening methods, the ranking of sensitivity depends on either the metric used to construct the dose-response curve or the representative factor used to summarize the curve. This ambiguity in conventional assessment methods is due to the fact that assessment methods are not consistent with the underlying principles of population dynamics. Instead, the suggested phenotype metrics provide all phenotypic rates of change that shape overall growth behavior at a given dose and better response classification, including the phenotypic mechanism of overall growth inhibition. This alternative high-throughput drug-response screening would improve preclinical pharmacogenomic analysis and the understanding of a therapeutic mechanism of action.

17.
Sci Rep ; 11(1): 19476, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593925

RESUMO

Variant prioritization of exome sequencing (ES) data for molecular diagnosis of sensorineural hearing loss (SNHL) with extreme etiologic heterogeneity poses a significant challenge. This study used an automated variant prioritization system ("EVIDENCE") to analyze SNHL patient data and assess its diagnostic accuracy. We performed ES of 263 probands manifesting mild to moderate or higher degrees of SNHL. Candidate variants were classified according to the 2015 American College of Medical Genetics guidelines, and we compared the accuracy, call rates, and efficiency of variant prioritizations performed manually by humans or using EVIDENCE. In our in silico panel, 21 synthetic cases were successfully analyzed by EVIDENCE. In our cohort, the ES diagnostic yield for SNHL by manual analysis was 50.19% (132/263) and 50.95% (134/263) by EVIDENCE. EVIDENCE processed ES data 24-fold faster than humans, and the concordant call rate between humans and EVIDENCE was 97.72% (257/263). Additionally, EVIDENCE outperformed human accuracy, especially at discovering causative variants of rare syndromic deafness, whereas flexible interpretations that required predefined specific genotype-phenotype correlations were possible only by manual prioritization. The automated variant prioritization system remarkably facilitated the molecular diagnosis of hearing loss with high accuracy and efficiency, fostering the popularization of molecular genetic diagnosis of SNHL.


Assuntos
Suscetibilidade a Doenças , Estudos de Associação Genética , Heterogeneidade Genética , Variação Genética , Perda Auditiva/genética , Alelos , Feminino , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Genótipo , Perda Auditiva/diagnóstico , Humanos , Lactente , Recém-Nascido , Masculino , Técnicas de Amplificação de Ácido Nucleico , Fenótipo , Sequenciamento do Exoma
18.
J Exp Clin Cancer Res ; 40(1): 333, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34686187

RESUMO

BACKGROUND: Recently, allogeneic natural killer (NK) cells have gained considerable attention as promising immunotherapeutic tools due to their unique biological functions and characteristics. Although many NK expansion strategies have been reported previously, a deeper understanding of cryopreserved allogeneic NK cells is needed for specific therapeutic approaches. METHODS: We isolated CD3-CD56+ primary natural killer (pNK) cells from healthy donors and expanded them ex vivo using a GMP-compliant method without any feeder to generate large volumes of therapeutic pNK cells and cryopreserved stocks. After validation for high purity and activating phenotypes, we performed RNA sequencing of the expanded and cryopreserved pNK cells. The pNK cells were used against various cancer cell lines in 7-AAD/CFSE cytotoxicity assay. For in vivo efficacy study, NSG mice bearing subcutaneous cisplatin-resistant A2780cis xenografts were treated with our pNK cells or cisplatin. Antitumor efficacy was assessed by measuring tumor volume and weight. RESULTS: Compared to the pNK cells before expansion, pNK cells after expansion showed 2855 upregulated genes, including genes related to NK cell activation, cytotoxicity, chemokines, anti-apoptosis, and proliferation. Additionally, the pNK cells showed potent cytolytic activity against various cancer cell lines. Interestingly, our activated pNK cells showed a marked increase in NKp44 (1064-fold), CD40L (12,018-fold), and CCR5 (49-fold), and did not express the programmed cell death protein 1(PD-1). We also demonstrated the in vitro and in vivo efficacies of pNK cells against cisplatin-resistant A2780cis ovarian cancer cells having a high programmed death-ligand 1(PD-L1) and low HLA-C expression. CONCLUSIONS: Taken together, our study provides the first comprehensive genome wide analysis of ex vivo-expanded cryopreserved pNK cells. It also indicates the potential use of expanded and cryopreserved pNK cells as a highly promising immunotherapy for anti-cancer drug resistant patients.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ligação Proteica , Receptores de Células Matadoras Naturais/metabolismo , Animais , Biomarcadores , Técnicas de Cultura de Células , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Criopreservação , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Imunoterapia/métodos , Células Matadoras Naturais/citologia , Ligantes , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cells ; 10(9)2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34572039

RESUMO

The maturation of the oocyte is influenced by cumulus cells (CCs) and associated with pregnancy rate, whereas the influencing factors have not been completely elucidated in the CCs. In this study, we identified new regulators of CCs for high-quality oocytes and successful pregnancies during assisted reproductive techniques. CCs were collected from cumulus-oocyte complexes (COCs) in young (≤33 years old) and old (≥40 years old) women undergoing intracytoplasmic sperm injection (ICSI) procedures. We screened for factors differentially expressed between young vs. old CCs and pregnancy vs. non-pregnancy using whole mRNA-seq-next-generation sequencing (NGS). We characterized the transcriptome of the CCs to identify factors critical for achieving pregnancy in IVF cycles. Women in the young and old pregnancy groups exhibited the up- and downregulation of multiple genes compared with the non-pregnancy groups, revealing the differential regulation of several specific genes involved in ovarian steroidogenesis in CCs. It was shown that the low-density lipoprotein (LDL) receptor to the steroidogenesis pathway was upregulated in CCs with higher maturity rates of oocytes in the pregnancy group. In conclusion, a higher pregnancy rate is related to the signaling pathway of steroidogenesis by the LDL receptor in infertile women undergoing IVF procedures.


Assuntos
Células do Cúmulo/citologia , Infertilidade Feminina/terapia , Oócitos/citologia , Folículo Ovariano/citologia , Receptores de LDL/metabolismo , Esteroides/biossíntese , Adulto , Células do Cúmulo/metabolismo , Feminino , Humanos , Infertilidade Feminina/patologia , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Gravidez , Transcriptoma
20.
Cancers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34439131

RESUMO

Ovarian cancer is one of the leading causes of deaths among patients with gynecological malignancies worldwide. In order to identify prognostic markers for ovarian cancer, we performed RNA-sequencing and analyzed the transcriptome data from 51 patients who received conventional therapies for high-grade serous ovarian carcinoma (HGSC). Patients with early-stage (I or II) HGSC exhibited higher immune gene expression than patients with advanced stage (III or IV) HGSC. In order to predict the prognosis of patients with HGSC, we created machine learning-based models and identified USP19 and RPL23 as candidate prognostic markers. Specifically, patients with lower USP19 mRNA levels and those with higher RPL23 mRNA levels had worse prognoses. This model was then used to analyze the data of patients with HGSC hosted on The Cancer Genome Atlas; this analysis validated the prognostic abilities of these two genes with respect to patient survival. Taken together, the transcriptome profiles of USP19 and RPL23 determined using a machine-learning model could serve as prognostic markers for patients with HGSC receiving conventional therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...