Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794376

RESUMO

Cnidium monnieri fructus is widely used in traditional Oriental medicine for treating female genital disorders, male impotence, frigidity, and skin-related conditions in East Asia. However, the role of C. monnieri fructus extract (CMFE) in melanin synthesis is not well elucidated. This study aimed to investigate the anti-melanogenesis effect and mechanism of action of CMFE in α-MSH-stimulated B16F10 cells. Intracellular melanin content and tyrosinase activity were measured in α-MSH-stimulated B16F10 cells treated with various concentrations of CMFE (0.5-5 µg/mL). mRNA and protein levels of tyrosinase and MITF were evaluated using qRT-PCR and ting. CMFE's effect on the proteasomal degradation of tyrosinase was confirmed using a proteasomal degradation inhibitor, MG132. CMFE treatment activated p38, a protein associated with proteasomal degradation. Treatment with CMFE at up to 5 µg/mL showed no significant cytotoxicity. CMFE significantly reduced α-MSH-stimulated melanin production (43.29 ± 3.55% decrease, p < 0.05) and cellular tyrosinase activity (31.14 ± 3.15% decrease, p < 0.05). Although mRNA levels of MITF and tyrosinase increased, CMFE suppressed tyrosinase protein levels. The suppressive effect of CMFE on tyrosinase protein was blocked by MG132. CMFE inhibited melanogenesis by promoting the proteasome degradation of tyrosinase through p38 activation. These findings suggest that CMFE has the potential to be a natural whitening agent for inhibiting melanogenesis.

2.
J Comput Chem ; 44(15): 1437-1445, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988355

RESUMO

A major difference between amyloid precursor protein (APP) isoforms (APP695 and APP751) is the existence of a Kunitz type protease inhibitor (KPI) domain which has a significant impact on the homo- and hetero-dimerization of APP isoforms. However, the exact molecular mechanisms of dimer formation remain elusive. To characterize the role of the KPI domain in APP dimerization, we performed a single molecule pull down (SiMPull) assay where homo-dimerization between tethered APP molecules and soluble APP molecules was highly preferred regardless of the type of APP isoforms, while hetero-dimerization between tethered APP751 molecules and soluble APP695 molecules was limited. We further investigated the domain level APP-APP interactions using coarse-grained models with the Martini force field. Though the model initial ternary complexes (KPI-E1, KPI-KPI, KPI-E2, E1-E1, E2-E2, and E1-E2) generated using HADDOCK (HD) and AlphaFold2 (AF2), the binding free energy profiles and the binding affinities of the domain combinations were investigated via the umbrella sampling with Martini force field. Additionally, membrane-bound microenvironments at the domain level were modeled. As a result, it was revealed that the KPI domain has a stronger attractive interaction with itself than the E1 and E2 domains, as reported elsewhere. Thus, the KPI domain of APP751 may form additional attractive interactions with E1, E2 and the KPI domain itself, whereas it is absent in APP695. In conclusion, we found that the APP751 homo-dimer formation is predominant than the homodimerization in APP695, which is facilitated by the presence of the KPI domain.


Assuntos
Precursor de Proteína beta-Amiloide , Inibidores de Proteases , Precursor de Proteína beta-Amiloide/metabolismo , Dimerização , Isoformas de Proteínas/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA