Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 620(7974): 501-515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587295

RESUMO

The metal-oxide-semiconductor field-effect transistor (MOSFET), a core element of complementary metal-oxide-semiconductor (CMOS) technology, represents one of the most momentous inventions since the industrial revolution. Driven by the requirements for higher speed, energy efficiency and integration density of integrated-circuit products, in the past six decades the physical gate length of MOSFETs has been scaled to sub-20 nanometres. However, the downscaling of transistors while keeping the power consumption low is increasingly challenging, even for the state-of-the-art fin field-effect transistors. Here we present a comprehensive assessment of the existing and future CMOS technologies, and discuss the challenges and opportunities for the design of FETs with sub-10-nanometre gate length based on a hierarchical framework established for FET scaling. We focus our evaluation on identifying the most promising sub-10-nanometre-gate-length MOSFETs based on the knowledge derived from previous scaling efforts, as well as the research efforts needed to make the transistors relevant to future logic integrated-circuit products. We also detail our vision of beyond-MOSFET future transistors and potential innovation opportunities. We anticipate that innovations in transistor technologies will continue to have a central role in driving future materials, device physics and topology, heterogeneous vertical and lateral integration, and computing technologies.

3.
Korean J Women Health Nurs ; 28(3): 174-186, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36403570

RESUMO

PURPOSE: This study aimed to investigate the effects of virtual reality used in maternal-child nursing clinical practicums on nursing students' competencies through a systematic review. METHODS: The inclusion criteria were peer-reviewed papers in English or Korean presenting analytic studies of maternal-child nursing practicums using virtual reality. An electronic literature search of the Cochrane Library, CINAHL, EMBASE, ERIC, PubMed, and Research Information Sharing System databases was performed using combinations of the keywords "nursing student," "virtual reality," "augmented reality," "mixed reality," and "virtual simulation" from February 4 to 15, 2022. Quality appraisal was performed using the RoB 2 and ROBINS-I tools for randomized controlled trials (RCTs) and non-RCTs, respectively. RESULTS: Of the seven articles identified, the RCT study (n=1) was deemed to have a high risk of bias, with some items indeterminable due to a lack of reported details. Most of the non-RCT studies (n=6) had a moderate or serious risk of bias related to selection and measurement issues. Clinical education using virtual reality had positive effects on knowledge, skills, satisfaction, self-efficacy, and needs improvement; however, it did not affect critical thinking or self-directed learning. CONCLUSION: This study demonstrated that using virtual reality for maternal-child nursing clinical practicums had educational effects on a variety of students' competencies. Considering the challenges of providing direct care in clinical practicums, virtual reality can be a viable tool that supplements maternal-child nursing experience. Greater rigor and fuller reporting of study details are required for future research.

4.
Nat Commun ; 13(1): 4155, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851053

RESUMO

An artificial muscle actuator resolves practical engineering problems in compact wearable devices, which are limited to conventional actuators such as electromagnetic actuators. Abstracting the fundamental advantages of an artificial muscle actuator provides a small-scale, high-power actuating system with a sensing capability for developing varifocal augmented reality glasses and naturally fit haptic gloves. Here, we design a shape memory alloy-based lightweight and high-power artificial muscle actuator, the so-called compliant amplified shape memory alloy actuator. Despite its light weight (0.22 g), the actuator has a high power density of 1.7 kW/kg, an actuation strain of 300% under 80 g of external payload. We show how the actuator enables image depth control and an immersive tactile response in the form of augmented reality glasses and two-way communication haptic gloves whose thin form factor and high power density can hardly be achieved by conventional actuators.


Assuntos
Realidade Aumentada , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Músculos , Ligas de Memória da Forma
5.
Small ; 17(52): e2102792, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636144

RESUMO

Non-toxic InP-based nanocrystals have been developed for promising candidates for commercial optoelectronic applications and they still require further improvement on photophysical properties, compared to Cd-based quantum dots (QDs), for better device efficiency and long-term stability. It is, therefore, essential to understand the precise mechanism of carrier trapping even in the state-of-the-art InP-based QD with near-unity luminescence. Here, it is shown that using time-resolved spectroscopic measurements of systematically size-controlled InP/ZnSe/ZnS core/shell/shell QDs with the quantum yield close to one, carrier trapping decreases with increasing the energy difference between band-edge and trap states, indicating that the process follows the energy gap law, well known in molecular photochemistry for nonradiative internal conversion between two electronic states. Similar to the molecular view of the energy gap law, it is found that the energy gap between the band-edge and trap states is closely associated with ZnSe phonons that assist carrier trapping into defects in highly luminescent InP/ZnSe/ZnS QDs. These findings represent a striking departure from the generally accepted view of carrier trapping mechanism in QDs in the Marcus normal region, providing a step forward understanding how excitons in nanocrystals interact with traps, and offering valuable guidance for making highly efficient and stable InP-based QDs.


Assuntos
Pontos Quânticos , Luminescência , Sulfetos , Compostos de Zinco
6.
ACS Appl Mater Interfaces ; 13(9): 11396-11402, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33480686

RESUMO

Facile strategies in flexible transparent conductive electrode materials that can sustain their electrical conductivities under 1 mm-scale radius of curvature are required for wider applications such as foldable devices. We propose a rational design as well as a fabrication process for a silver nanowire-based transparent conductive electrode with low sheet resistance and high transmittance even after prolonged cyclic bending. The electrode is fabricated on a poly(ethylene terephthalate) film through the hybridization of silver nanowires with silver nanoparticles-anchored RuO2 nanosheets. This hybridization significantly improves the performance of the silver nanowire network under severe bending strain and creates an electrically percolative structure between silver nanowires and RuO2 nanosheets in the presence of anchored silver nanoparticles on the surface of RuO2 nanosheets. The resistance change of this hybrid transparent conductive electrode is 8.8% after 200,000 bending cycles at a curvature radius of 1 mm, making it feasible for use in foldable devices.

7.
Nat Nanotechnol ; 16(1): 69-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33106642

RESUMO

Spatial light modulators are essential optical elements in applications that require the ability to regulate the amplitude, phase and polarization of light, such as digital holography, optical communications and biomedical imaging. With the push towards miniaturization of optical components, static metasurfaces are used as competent alternatives. These evolved to active metasurfaces in which light-wavefront manipulation can be done in a time-dependent fashion. The active metasurfaces reported so far, however, still show incomplete phase modulation (below 360°). Here we present an all-solid-state, electrically tunable and reflective metasurface array that can generate a specific phase or a continuous sweep between 0 and 360° at an estimated rate of 5.4 MHz while independently adjusting the amplitude. The metasurface features 550 individually addressable nanoresonators in a 250 × 250 µm2 area with no micromechanical elements or liquid crystals. A key feature of our design is the presence of two independent control parameters (top and bottom gate voltages) in each nanoresonator, which are used to adjust the real and imaginary parts of the reflection coefficient independently. To demonstrate this array's use in light detection and ranging, we performed a three-dimensional depth scan of an emulated street scene that consisted of a model car and a human figure up to a distance of 4.7 m.


Assuntos
Dispositivos Ópticos , Tecnologia de Sensoriamento Remoto/instrumentação , Automóveis , Desenho de Equipamento , Humanos , Imageamento Tridimensional , Luz , Cristais Líquidos , Miniaturização , Nanoestruturas/química , Nanotecnologia/instrumentação , Estudo de Prova de Conceito , Tecnologia de Sensoriamento Remoto/métodos
8.
Nat Commun ; 11(1): 5568, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173031

RESUMO

Since its discovery almost 70 years ago, the hologram has been considered to reproduce the most realistic three dimensional images without visual side effects. Holographic video has been extensively researched for commercialization, since Benton et al. at MIT Media Lab developed the first holographic video systems in 1990. However, commercially available holographic video displays have not been introduced yet for several reasons: narrow viewing angle, bulky optics and heavy computing power. Here we present an interactive slim-panel holographic video display using a steering-backlight unit and a holographic video processor to solve the above issues. The steering-backlight unit enables to expand the viewing angle by 30 times and its diffractive waveguide architecture makes a slim display form-factor. The holographic video processor computes high quality holograms in real-time on a single-chip. We suggest that the slim-panel holographic display can provide realistic three-dimensional video in office and household environments.

9.
Science ; 370(6515): 459-463, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33093108

RESUMO

Optical metasurfaces are starting to find their way into integrated devices, where they can enhance and control the emission, modulation, dynamic shaping, and detection of light waves. In this study, we show that the architecture of organic light-emitting diode (OLED) displays can be completely reenvisioned through the introduction of nanopatterned metasurface mirrors. In the resulting meta-OLED displays, different metasurface patterns define red, green, and blue pixels and ensure optimized extraction of these colors from organic, white light emitters. This new architecture facilitates the creation of devices at the ultrahigh pixel densities (>10,000 pixels per inch) required in emerging display applications (for instance, augmented reality) that use scalable nanoimprint lithography. The fabricated pixels also offer twice the luminescence efficiency and superior color purity relative to standard color-filtered white OLEDs.

10.
Nat Commun ; 11(1): 3916, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764547

RESUMO

The demand for essential pixel components with ever-decreasing size and enhanced performance is central to current optoelectronic applications, including imaging, sensing, photovoltaics and communications. The size of the pixels, however, are severely limited by the fundamental constraints of lightwave diffraction. Current development using transmissive filters and planar absorbing layers can shrink the pixel size, yet there are two major issues, optical and electrical crosstalk, that need to be addressed when the pixel dimension approaches wavelength scale. All these fundamental constraints preclude the continual reduction of pixel dimensions and enhanced performance. Here we demonstrate subwavelength scale color pixels in a CMOS compatible platform based on anti-Hermitian metasurfaces. In stark contrast to conventional pixels, spectral filtering is achieved through structural color rather than transmissive filters leading to simultaneously high color purity and quantum efficiency. As a result, this subwavelength anti-Hermitian metasurface sensor, over 28,000 pixels, is able to sort three colors over a 100 nm bandwidth in the visible regime, independently of the polarization of normally-incident light. Furthermore, the quantum yield approaches that of commercial silicon photodiodes, with a responsivity exceeding 0.25 A/W for each channel. Our demonstration opens a new door to sub-wavelength pixelated CMOS sensors and promises future high-performance optoelectronic systems.

11.
Nano Lett ; 20(8): 5837-5843, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32628851

RESUMO

Grain boundaries (GBs) are ubiquitous in solids and have been of central importance in understanding the nature of polycrystals. In addition to their classical roles, topological insulators (TIs) offer a chance to realize GBs hosting distinct topological states that can be controlled by their crystal symmetries. However, such roles of crystalline symmetry in two-dimensional (2D) TIs have not been definitively measured yet. Here, we present the first direct evidence of a symmetry-enforced metallic state along a GB in 1T'-MoTe2, a prototypical 2D TI. Using scanning tunneling microscopy, we show a metallic state along a GB with nonsymmorphic lattice symmetry and its absence along another boundary with symmorphic symmetry. Our atomistic simulations demonstrate in-gap Weyl semimetallic states for the former, whereas they demonstrate gapped states for the latter, explaining our observation well. The observed metallic state, tightly linked to its crystal symmetry, can be used to create a stable conducting nanowire inside TIs.

12.
Nat Commun ; 11(1): 2844, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503967

RESUMO

Severe events of wintertime particulate air pollution in Beijing (winter haze) are associated with high relative humidity (RH) and fast production of particulate sulfate from the oxidation of sulfur dioxide (SO2) emitted by coal combustion. There has been considerable debate regarding the mechanism for SO2 oxidation. Here we show evidence from field observations of a haze event that rapid oxidation of SO2 by nitrogen dioxide (NO2) and nitrous acid (HONO) takes place, the latter producing nitrous oxide (N2O). Sulfate shifts to larger particle sizes during the event, indicative of fog/cloud processing. Fog and cloud readily form under winter haze conditions, leading to high liquid water contents with high pH (>5.5) from elevated ammonia. Such conditions enable fast aqueous-phase oxidation of SO2 by NO2, producing HONO which can in turn oxidize SO2 to yield N2O.This mechanism could provide an explanation for sulfate formation under some winter haze conditions.

13.
ACS Nano ; 12(12): 12733-12740, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516949

RESUMO

The metal/graphene interface has been one of the most important research topics with regard to charge screening, charge transfer, contact resistance, and solar cells. Chemical bond formation of metal and graphene can be deduced from the defect induced D-band and its second-order mode, 2D band, measured by Raman spectroscopy, as a simple and nondestructive method. However, a phonon mode located at ∼1350 cm-1, which is normally known as the defect-induced D-band, is intriguing for graphene deposited with noble metals (Ag, Au, and Cu). We observe anomalous K-point phonons in nonreactive noble metal/graphene heterostructures. The intensity ratio of the midfrequency mode at ∼1350 cm-1 over G-band (∼1590 cm-1) exhibits nonlinear but resonant behavior with the excitation laser wavelength, and more importantly, the phonon frequency-laser energy dispersion is ∼10-17 cm-1 eV-1, which is much less than the conventional range. These phonon modes of graphene at nonzero phonon wave vector (q ≠ 0) around K points are activated by localized surface plasmon resonance and not by the defects due to chemical bond formation of metal/graphene. This hypothesis is supported by density functional theory (DFT) calculations for noble metals and Cr along with the measured contact resistances.

14.
BMC Complement Altern Med ; 18(1): 256, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223806

RESUMO

BACKGROUND: Euphorbia supina (ES) has been widely used in folk medicine owing to its antibacterial, hemostatic, and anti-inflammatory properties. The aim of this study was to evaluate the antioxidant and skin-whitening effects of a 70% ethanol extract of ES. METHODS: The aerial parts of ES plant were extracted with 70% ethanol. The viability of B16F10 cells was evaluated by MTT assay to determine the non-toxic doses for further experiments. The tyrosinase and cellular tyrosinase activities were then measured using an enzyme-substrate assay. In addition, the expression of whitening-related proteins was measured using western blot. RESULTS: The antioxidant activity of the ES samples increased in a dose-dependent manner, as confirmed by their radical scavenging activities in the 2,2-diphenyl-1-1-picrylhydrazyl and 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) assays. The ES extract significantly reduced tyrosinase activity and melanin content in a dose-dependent manner. Furthermore, it decreased α-melanocyte stimulating hormone (MSH)-induced protein expression of tyrosinase and microphthalmia-associated transcription factor (MITF). CONCLUSIONS: Our results indicate that the ES extract attenuated α-MSH-stimulated melanin synthesis by modulating tyrosinase and MITF expression. Therefore, the ES extract could be a promising therapeutic agent to treat hyperpigmentation and as an ingredient for skin-whitening cosmetics.


Assuntos
Antioxidantes/farmacologia , Euphorbia/química , Componentes Aéreos da Planta/química , Extratos Vegetais/farmacologia , Preparações Clareadoras de Pele/farmacologia , Animais , Antioxidantes/química , Linhagem Celular Tumoral , Melaninas/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/química , Biossíntese de Proteínas/efeitos dos fármacos , Preparações Clareadoras de Pele/química , alfa-MSH/metabolismo
15.
BMC Complement Altern Med ; 18(1): 263, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30261862

RESUMO

BACKGROUND: Euphorbia supina (ES) plant has been used as treatment for inflammatory conditions. The antibacterial effect and the anti-inflammatory mechanism of ES for Propionibacterium (P.) acnes-induced inflammation in THP-1 cells and acne animal model remain unclear. Therefore, the objective of the present study was to determine the antibacterial and anti-inflammatory activities of ES against P. acnes, the etiologic agent of skin inflammation. METHOD: The antibacterial activities of ES were tested with disc diffusion and broth dilution methods. Cytotoxicity of ES at different doses was evaluated by the MTT assay. THP-1 cells were stimulated by heat-killed P. acnes in the presence of ES. The pro-inflammatory cytokines and mRNA levels were measured by ELISA and real-time-PCR. MAPK expression was analyzed by Western blot. The living P. acnes was intradermally injected into the ear of BLBC/c mice. Subsequently, chemical composition of ES was analyzed by liquids chromatography-mass spectrometry (LC-MS). RESULT: ES had stronger antibacterial activity against P. acnes and inhibitory activity on lipase. ES had no significant cytotoxicity on THP-1 cells. ES suppressed the mRNA levels and production of IL-8, TNF-a, IL-1ß in vitro. ES inhibited the expression levels of pro-inflammatory cytokines and the MAPK signaling pathway. Ear thickness and inflammatory cells were markedly reduced by ES treatment. Protocatechuic acid, gallic acid, quercetin, and kaempferol were detected by LC-MS analysis in ES. CONCLUSIONS: Our results demonstrate antibacterial and anti-inflammatory activities of ES extract against P. acnes. It is suggested that ES extract might be used to treatment anti-inflammatory skin disease.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Euphorbia/química , Inflamação/microbiologia , Extratos Vegetais/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Animais , Antibacterianos/toxicidade , Anti-Inflamatórios/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Extratos Vegetais/toxicidade , Pele/efeitos dos fármacos , Pele/patologia
16.
Workplace Health Saf ; 66(12): 588-596, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29911497

RESUMO

This cross-sectional study used quantitative survey data collected from registered nurses (RNs) who worked as staff nurses in medium-sized (300 beds or less) Korean hospitals. Data from 290 RNs were analyzed to examine the nature and prevalence of staff nurses' work hours, overtime, breaks, and related work conditions. The results showed that staff nurses working in medium-sized Korean hospitals worked 9.6 hours a day on average and had 1.5 breaks daily, including mealtime. The average number of days the nurses skipped a meal due to work during the last month was 6.1. With respect to skipping bathroom breaks due to work, staff nurses reported that they could not visit the bathroom 7.3 times during the last month. Regarding work conditions, staff nurses working in intensive care units reported having longer daily work hours and were more likely to work 10 hours or more per shift. Nurses with less than 3 years of experience reported longer daily work hours and fewer breaks.


Assuntos
Recursos Humanos de Enfermagem Hospitalar , Saúde Ocupacional , Admissão e Escalonamento de Pessoal , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , República da Coreia , Carga de Trabalho
17.
Exp Ther Med ; 15(6): 5070-5076, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29844801

RESUMO

The present study was undertaken to investigate the mechanism behind the anti-obesity effect of the 50% ethanol extract of Chrysanthemum indicum L. flowers (CIEE) in a mouse model of high-fat diet (HFD)-induced obesity. Male C57BL/6J mice (six mice in each group) were administered CIEE (8, 40 and 200 mg/kg) for 6 weeks while being fed with a HFD. Garcinia cambogia (GC) was used as the positive control and was administered in the same manner as CIEE. Results demonstrated that oral administration of CIEE significantly reduced body weight, epididymal white adipose tissue (EWAT), liver weight and serum levels of total cholesterol and triglyceride (P<0.05). In addition, CIEE reduced serum leptin and increased adiponectin levels. CIEE significantly downregulated peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein-α and fatty acid synthase expression levels in EWAT, and upregulated the protein expression of PPARα in liver tissue of HFD-fed obese mice (P<0.05). These results suggested that Chrysanthemum indicum L. flowers may be a potentially effective therapeutic agent for obesity and its associated complications.

18.
Int J Mol Med ; 41(5): 2952-2960, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29484428

RESUMO

The present study was undertaken to investigate the anti­obesity effect of a 50% ethanol extract of Euphorbia supina (ESEE) in high­fat­diet (HFD)­induced obese C57BL/6J mice. Mice were fed a HFD with or without ESEE (2, 10, or 50 mg/kg) or with Garcinia cambogia (positive control) for 6 weeks. ESEE supplementation significantly reduced body, epididymal white adipose tissue (eWAT), and organ weights (P<0.05). ESEE also reduced hepatic steatosis and improved serum lipid profiles. In addition, ESEE significantly reduced serum leptin levels and increased adiponectin levels, and significantly downregulated the mRNA and protein levels of proliferator­activated receptor γ (PPARγ) and CCAAT/enhancer­binding protein alpha (C/EPBα) in eWAT and liver tissues (all P<0.05). These results suggested that ESEE supplementation protects against HFD­induced obesity by downregulating PPARγ and C/EPBα, and that ESEE may be beneficial for the prevention and treatment of obesity and associated diseases.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Euphorbia , Obesidade/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Fármacos Antiobesidade/química , Peso Corporal/efeitos dos fármacos , Euphorbia/química , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/patologia , Extratos Vegetais/química
19.
Opt Express ; 25(22): 26781-26791, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092163

RESUMO

The coherent backlight unit (BLU) using a holographic optical element (HOE) for full-color flat-panel holographic display is proposed. The HOE BLU consists of two reflection type HOEs that change the optical beam path and shape by diffraction. The illumination area of backlight is 150 mm x 90 mm and the thickness is 10 mm, which is slim compared to other conventional coherent backlight units for holographic display systems. This backlight unit exhibits a total efficiency of 8.0% at red (660 nm), 7.7% at green (532 nm), and 3.2% at blue (460 nm) using optimized recording conditions for each wavelength. As a result, we could get a bright full color hologram image.

20.
Nat Commun ; 8(1): 840, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018190

RESUMO

We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 1013 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm2 V-1 s-1); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns-1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 107, obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...