Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 65(7): e0013521, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33903104

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes a debilitating febrile illness characterized by persistent muscle and joint pain. The widespread distribution of transmission-competent vectors, Aedes species mosquitoes, indicates the potential risk of large-scale epidemics with high attack rates that can severely impact public health globally. Despite this, currently, there are no antivirals available for the treatment of CHIKV infections. Thus, we aimed to identify potential drug candidates by screening a chemical library using a cytopathic effect-based high-throughput screening assay. As a result, we identified radicicol, a heat shock protein 90 (Hsp90) inhibitor that effectively suppressed CHIKV replication by blocking the synthesis of both positive- and negative-strand viral RNA as well as expression of viral proteins. Interestingly, selection for viral drug-resistant variants and mutational studies revealed nonstructural protein 2 (nsP2) as a putative molecular target of radicicol. Moreover, coimmunoprecipitation and in silico modeling analyses determined that G641D mutation in the methyltransferase (MT)-like domain of nsP2 is essential for its interaction with cytoplasmic Hsp90ß chaperone. Our findings collectively support the potential application of radicicol as an anti-CHIKV agent. The detailed study of the underlying mechanism of action further contributes to our understanding of virus-host interactions for novel therapeutics against CHIKV infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/genética , Macrolídeos , Mosquitos Vetores , Proteínas não Estruturais Virais/genética , Replicação Viral
2.
Animals (Basel) ; 10(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210054

RESUMO

Stresses and various infectious reagents caused multiple inflammatory diseases in swine in a livestock industrial environment. Therefore, there is a need for an effective therapeutic or preventive agent that could alleviate chronic and acute inflammation. We found that lysophosphatidic acid (LPA), a stress-induced potent endogenous inflammatory molecule, causes a broad range-regulation of inflammation related genes inflammation in swine macrophages. We further investigated the genome scaled transcriptional regulatory effect of a novel LPA-signaling antagonist, KA-1002 on swine macrophages, inducing the alleviated LPA-mediated inflammation related gene expression. Therefore, KA-1002 could potentially serve as a novel therapeutic or preventive agent to maintain physiologically healthy and balanced conditions of pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...