Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 128(30): 9753-60, 2006 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16866531

RESUMO

We synthesized uniformly sized, pencil-shaped CoO nanorods by the thermal decomposition of a cobalt-oleate complex, which was prepared from the reaction of cobalt chloride and sodium oleate. The diameters and lengths of the CoO nanorods were easily controlled by varying the experimental conditions, such as the heating rate and the amount of Co-oleate complex. The X-ray diffraction pattern revealed that the CoO nanorods have an extraordinary wurtzite ZnO crystal structure. These uniformly sized nanorods self-assembled to form both horizontal parallel arrangements and perpendicular hexagonal honeycomb superlattice structures. Reduction of the nanorods by heating under a hydrogen atmosphere generated either hcp Co or Co(2)C nanorods. Characterization of the CoO nanorods using X-ray absorption spectroscopy, X-ray magnetic circular dichroism spectroscopy, and magnetic measurements showed that they contain a small fraction of ferromagnetic Co impurities.

2.
J Am Chem Soc ; 128(3): 688-9, 2006 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-16417336

RESUMO

We synthesized uniform pore-sized mesoporous silica spheres embedded with magnetite nanocrystal and quantum dots. The magnetic separation, luminescent detection, and controlled release of drugs were demonstrated using the uniform mesoporous silica spheres embedded with monodisperse nanocrystals.

4.
J Am Chem Soc ; 127(23): 8433-40, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15941277

RESUMO

We synthesized uniform-sized nanorods of transition metal phosphides from the thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. MnP nanorods with dimensions of 8 nm x 16 nm and 6 nm x 22 nm sized were synthesized by the thermal decomposition of Mn-TOP complex, which was prepared from the reaction of Mn(2)(CO)(10) and tri-n-octylphosphine (TOP), using a syringe pump with constant injection rates of 10 and 20 mL/h, respectively. When Co-TOP complex, which was prepared from the reaction of cobalt acetylacetonate and TOP, was reacted in a mixture solvent composed of octyl ether and hexadecylamine at 300 degrees C using a syringe pump, uniform 2.5 nm x 20 nm sized Co(2)P nanorods were generated. When cobaltocene was employed as a precursor, uniform Co(2)P nanorods with 5 nm x 15 nm were obtained. When Fe-TOP complex was added to trioctylphosphine oxide (TOPO) at 360 degrees C using a syringe pump and then allowed to age at 360 degrees C for 30 min, uniform-sized FeP nanorods with an average dimension of 12 nm x 500 nm were produced. Nickel phosphide (Ni(2)P) nanorods with 4 nm x 8 nm were synthesized successfully by thermally decomposing the Ni-TOP complex, which was synthesized by reacting acetylacetonate [Ni(acac)(2)] and TOP. We measured the magnetic properties of these nanorods, and some of the nanorods exhibited different magnetic characteristics compared to the bulk counterparts.

6.
Chem Commun (Camb) ; (1): 86-8, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15614381

RESUMO

We successfully synthesized monodisperse chromium nanoparticles from the thermolysis of a Fischer carbene complex.

7.
Nat Mater ; 3(12): 891-5, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15568032

RESUMO

The development of nanocrystals has been intensively pursued, not only for their fundamental scientific interest, but also for many technological applications. The synthesis of monodisperse nanocrystals (size variation <5%) is of key importance, because the properties of these nanocrystals depend strongly on their dimensions. For example, the colour sharpness of semiconductor nanocrystal-based optical devices is strongly dependent on the uniformity of the nanocrystals, and monodisperse magnetic nanocrystals are critical for the next-generation multi-terabit magnetic storage media. For these monodisperse nanocrystals to be used, an economical mass-production method needs to be developed. Unfortunately, however, in most syntheses reported so far, only sub-gram quantities of monodisperse nanocrystals were produced. Uniform-sized nanocrystals of CdSe (refs 10,11) and Au (refs 12,13) have been produced using colloidal chemical synthetic procedures. In addition, monodisperse magnetic nanocrystals such as Fe (refs 14,15), Co (refs 16-18), gamma-Fe(2)O(3) (refs 19,20), and Fe(3)O(4) (refs 21,22) have been synthesized by using various synthetic methods. Here, we report on the ultra-large-scale synthesis of monodisperse nanocrystals using inexpensive and non-toxic metal salts as reactants. We were able to synthesize as much as 40 g of monodisperse nanocrystals in a single reaction, without a size-sorting process. Moreover, the particle size could be controlled simply by varying the experimental conditions. The current synthetic procedure is very general and nanocrystals of many transition metal oxides were successfully synthesized using a very similar procedure.


Assuntos
Cristalização/métodos , Compostos Férricos/química , Temperatura Alta , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Análise de Falha de Equipamento , Compostos Férricos/síntese química , Manufaturas , Conformação Molecular , Solventes/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA